library(dendextend)
library(dplyr)
# Subsampling Iris Dataset
subsample <- c(118, 42,107,136,135,5,116,120,
123,138,15,147,142,87,101,46,
16,114,88,33,91,25,58,62,85,115,
110,44,140,126,32,99,43,10,119,
71,80,17,74,61,97,125,109,60,
29,19,77,45,54,132)
small_iris <- iris[subsample,]
#PCA followed by HCPC, consilid = TRUE
res.hcpc <-
PCA(small_iris, quali.sup = 5, graph = F) %>%
HCPC(consol = T, graph = F)
# Get consildated clusters
order <- res.hcpc$call$t$tree %>% as.dendrogram() %>% order.dendrogram()
clusts <- res.hcpc$call$X[order,"clust"]
# Using dendextend color leaves based on "clust" categorical variable
res.hcpc$call$t$tree %>%
as.dendrogram() %>%
assign_values_to_leaves_edgePar(value = clusts, edgePar = "col") %>%
hang.dendrogram(hang_height = 0.01 ) %>% # Only to see colors better
plot(horiz = T)