Dear sirs,
I
am trying to compute the FC factors associated with the transition from
the ground X ^3\Sigma (v=0, J=11) to the excited A ^3\Pi(v=0, J=10)
electro-rovibrational state of NH. Upon running expt_diatomic.x, I get
an output file where only the potential energy curve of the ground state
is read. How may I make the executable read the whole input file
correctly? The output file is reported below:
> echo of the input file
# N H
masses 14.0067 1.00797
charge 0
viblevels 0 0
rotlevels 10 11
solver numerov
potential angstrom hartree hartree
0.6 -54.7340367947 1.0 -54.5905636645615
0.8 -55.0772554452 1.0 -54.9321842931052
0.9 -55.1303554043 1.0 -54.9825551780967
0.95 -55.1421907366 1.0 -54.9937007902913
1 -55.1479182938 1.0 -54.9988762633028
1.035 -55.1491813005 1.0 -54.9998489274916
1.05 -55.1491644938 1.0 -54.9997337612469
1.1 -55.1471619428 1.0 -54.9975236011138
1.125 -55.1452432313 1.0 -54.9955743990172
1.15 -55.1428424425 1.0 -54.9931950948758
1.2 -55.1369100433 1.0 -54.9874715637862
1.4 -55.1066044190 1.0 -54.9598559635492
1.75 -55.0492211566 1.0 -54.9330147588499
2 -55.0288420401 1.0 -54.9220785524373
2.5 -55.0138324388 1.0 -54.9161620252153
3 -55.0110737522 1.0 -54.9150405013895
4 -55.0104269272 1.0 -54.9147200102561
6 -55.0100267080 1.0 -54.914757764588
7 -55.0102448689 1.0 -54.9144890523758
10 -55.0103932909 1.0 -54.9165181839949
end
> input data:
atomic mass 1 : 14.00670000 (amu)
atomic mass 2 : 1.00797000 (amu)
net charge : +0
reduced mass : 0.94030261 (amu) = 1714.06680250 (electron masses)
vibrational levels : from 0 to 0
rotational levels : from 10 to 11
elec transition : no
write wavefun files : no
grid size : 300 points
solver (integrator) : numerov
mapping of r grid : identity = off
r [a.u.] U1(r) [a.u.]
1.133835674775 -54.734036794700
1.511780899701 -55.077255445200
1.700753512163 -55.130355404300
1.795239818394 -55.142190736600
1.889726124626 -55.147918293800
1.955866538988 -55.149181300500
1.984212430857 -55.149164493800
2.078698737088 -55.147161942800
2.125941890204 -55.145243231300
2.173185043320 -55.142842442500
2.267671349551 -55.136910043300
2.645616574476 -55.106604419000
3.307020718095 -55.049221156600
3.779452249252 -55.028842040100
4.724315311564 -55.013832438800
5.669178373877 -55.011073752200
7.558904498503 -55.010426927200
11.338356747755 -55.010026708000
13.228082872380 -55.010244868900
18.897261246258 -55.010393290900
> begin ground state potential
> equilibrium parameters
e(min) = -55.149212102587 a.u. = -12103852.996186 cm^-1
re = 1.9683 a.u. = 1.0416 angstrom
> analysis in the harmonic oscillator + rigid rotor approximation
we = 3302.8941 cm^-1
Be = 16.525124 cm^-1
De = 0.001655 cm^-1
> analysis in the morse approximation
(parameters are estimated at the minimum point only)
alpha = 2.5484 bohr^-1
De = 0.029887 a.u. = 6559 cm^-1
we = 3302.89 cm^-1
wexe = 415.78 cm^-1
vmax = 3
> rovibrational energy levels
energy < r > < B_v > <prop>
J v (cm^-1) (Ang) (cm^-1)
@ 10 0 3379.7949 1.071959 15.841452 0.000000
@ 11 0 3727.5099 1.074417 15.769061 0.000000
> finished at Mon Sep 11 17:30:38 2023