But the command pattern is a pattern, not a paradigm. A software design pattern is a specific solution meant to meet a specific problem. A programming paradigm (like object-oriented programming or functional programming) is a style that can be applied at the level of entire applications.
Service-oriented programming (SOP) is a programming paradigm that uses "services" as the unit of computer work, to design and implement integrated business applications and mission critical software programs. Services can represent steps of business processes and thus one of the main applications of this paradigm is the cost-effective delivery of standalone or composite business applications that can "integrate from the inside-out". It inherently promotes service-oriented architecture (SOA), however, it is not the same as SOA. While SOA focuses on communication between systems using "services", SOP provides a new technique to build agile application modules using in-memory services as the unit of work.
Semantic design tools and runtime automation platforms can be built to support the fundamental concepts of SOP. For example, a service virtual machine (SVM) that automatically creates service objects as units of work and manages their context can be designed to run based on the SOP program metadata stored in XML and created by a design-time automation tool. In SOA terms, the SVM is both a service producer and a service consumer.
In SOP, customizations are managed through an inventive feature called Service Overrides. Through this feature, a service implementation can be statically or dynamically overridden by one of many possible implementations at runtime. This feature is analogous to polymorphism in object-oriented programming. Each possible override implementation can be associated to one or more override configuration portfolios in order to manage activation of groups of related overrides throughout different SOP application installations at the time of deployment.
Object-oriented programming (OOP) is a computer programming model that organizes software design around data, or objects, rather than functions and logic. An object can be defined as a data field that has unique attributes and behavior.
OOP focuses on the objects that developers want to manipulate rather than the logic required to manipulate them. This approach to programming is well-suited for programs that are large, complex and actively updated or maintained. This includes programs for manufacturing and design, as well as mobile applications; for example, OOP can be used for manufacturing system simulation software.
The organization of an object-oriented program also makes the method beneficial to collaborative development, where projects are divided into groups. Additional benefits of OOP include code reusability, scalability and efficiency.
While Simula is credited as being the first object-oriented programming language, many other programming languages are used with OOP today. But some programming languages pair with OOP better than others. For example, programming languages considered pure OOP languages treat everything as objects. Other programming languages are designed primarily for OOP, but with some procedural processes included.
The object-oriented programming model has been criticized by developers for multiple reasons. The largest concern is that OOP overemphasizes the data component of software development and does not focus enough on computation or algorithms. Additionally, OOP code may be more complicated to write and take longer to compile.
Object-oriented programming (OOP) is a programming paradigm based on the concept of objects,[1] which can contain data and code: data in the form of fields (often known as attributes or properties), and code in the form of procedures (often known as methods).
A common feature of objects is that methods are attached to them and can access and modify the object's data fields. In this brand of OOP, there is usually a special name such as this or self used to refer to the current object. In OOP, computer programs are designed by making them out of objects that interact with one another.[2][3] OOP languages are diverse, but the most popular ones are class-based, meaning that objects are instances of classes, which also determine their types.
Many of the most widely used programming languages (such as C++, Java,[4] Python, etc.) are multi-paradigm and they support object-oriented programming to a greater or lesser degree, typically in combination with imperative, procedural programming.
Terminology invoking "objects" in the modern sense of object-oriented programming made its first appearance at MIT in the late 1950s and early 1960s. In the environment of the artificial intelligence group, as early as 1960, "object" could refer to identified items (LISP atoms) with properties (attributes);[5][6]Alan Kay later cited a detailed understanding of LISP internals as a strong influence on his thinking in 1966, and that he used the term "object-oriented programming" in conversation as early as 1967.[1] Although sometimes called "the father of object-oriented programming",[7] Alan Kay has differentiated his notion of OO from the more conventional abstract data type notion of object, and has implied that the computer science establishment did not adopt his notion.[1] A 1976 MIT memo co-authored by Barbara Liskov lists Simula 67, CLU, and Alphard as object-oriented languages, but does not mention Smalltalk.[8]
Simula introduced important concepts that are today an essential part of object-oriented programming, such as class and object, inheritance, and dynamic binding.[12] The object-oriented Simula programming language was used mainly by researchers involved with physical modelling, such as models to study and improve the movement of ships and their content through cargo ports.[12]
In the 1970s, Smalltalk influenced the Lisp community to incorporate object-based techniques that were introduced to developers via the Lisp machine.[citation needed] Experimentation with various extensions to Lisp (such as LOOPS and Flavors introducing multiple inheritance and mixins) eventually led to the Common Lisp Object System, which integrates functional programming and object-oriented programming and allows extension via a Meta-object protocol. In the 1980s, there were a few attempts to design processor architectures that included hardware support for objects in memory but these were not successful. Examples include the Intel iAPX 432 and the Linn Smart Rekursiv.
In 1981, Goldberg edited the August issue of Byte Magazine, introducing Smalltalk and object-oriented programming to a wider audience. In 1986, the Association for Computing Machinery organised the first Conference on Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), which was unexpectedly attended by 1,000 people. In the mid-1980s Objective-C was developed by Brad Cox, who had used Smalltalk at ITT Inc.. Bjarne Stroustrup, who had used Simula for his PhD thesis, created the object-oriented C++.[13] In 1985, Bertrand Meyer also produced the first design of the Eiffel language. Focused on software quality, Eiffel is a purely object-oriented programming language and a notation supporting the entire software lifecycle. Meyer described the Eiffel software development method, based on a small number of key ideas from software engineering and computer science, in Object-Oriented Software Construction. Essential to the quality focus of Eiffel is Meyer's reliability mechanism, Design by Contract, which is an integral part of both the method and language.
In the early and mid-1990s object-oriented programming developed as the dominant programming paradigm when programming languages supporting the techniques became widely available. These included Visual FoxPro 3.0,[15][16][17] C++,[18] and Delphi[citation needed]. Its dominance was further enhanced by the rising popularity of graphical user interfaces, which rely heavily upon object-oriented programming techniques. An example of a closely related dynamic GUI library and OOP language can be found in the Cocoa frameworks on Mac OS X, written in Objective-C, an object-oriented, dynamic messaging extension to C based on Smalltalk. OOP toolkits also enhanced the popularity of event-driven programming (although this concept is not limited to OOP).
More recently, a number of languages have emerged that are primarily object-oriented, but that are also compatible with procedural methodology. Two such languages are Python and Ruby. Probably the most commercially important recent object-oriented languages are Java, developed by Sun Microsystems, as well as C# and Visual Basic.NET (VB.NET), both designed for Microsoft's .NET platform. Each of these two frameworks shows, in its own way, the benefit of using OOP by creating an abstraction from implementation. VB.NET and C# support cross-language inheritance, allowing classes defined in one language to subclass classes defined in the other language.
Object-oriented programming uses objects, but not all of the associated techniques and structures are supported directly in languages that claim to support OOP. It performs operations on operands. The features listed below are common among languages considered to be strongly class- and object-oriented (or multi-paradigm with OOP support), with notable exceptions mentioned.[19][20][21][22]
Languages that support object-oriented programming (OOP) typically use inheritance for code reuse and extensibility in the form of either classes or prototypes. Those that use classes support two main concepts:
Each object is said to be an instance of a particular class (for example, an object with its name field set to "Mary" might be an instance of class Employee). Procedures in object-oriented programming are known as methods; variables are also known as fields, members, attributes, or properties. This leads to the following terms:
aa06259810