== Possible solid-state excess energy design ==
I'm still reconfirming my device that is based on my magnetic theory.
The device consists of two magnetic cores. One magnetic core is a
common ferrite core that is cut in half. The other core is the key to
success, a MAGAMP core, part number MP1903P4AS, made by Metglas. The
Metglas MAGAMP has the highest known permeability of any commercial
core, over 1 million. It is exceptionally non-linear. The MP1903P4AS
core comes encased inside a hard plastic casing that is split in two
down the middle. The top half is removed, where the metallic core sits
exposed inside the bottom half of the plastic casing. The metallic
MP1903P4AS core is momentarily removed from the bottom casing so the
edges around the plastic casing are shaved down on two ends. The two
ends will not be wound with enameled coated copper wire (magnet wire).
The two ends are free from wire and plastic casing so the ferrite core
can fit on top without air gaps. This allows the half ferrite core to
fit on top of the MP1903P4AS toroid, which increase the ferrite cores
effective permeability by a significant amount. The inductance of the
cores is meaningless for this setup because of the exceptionally non-
linearity characteristics of the Metglas MAGAMP core. Although the
resistance is 0.80 ohms for the ferrite core, and 0.42 ohms for the
MP1903P4AS core. The wire gauge used is 26 AWG. The MP1903P4AS core
has two windings, which are connected to each other in-series, and
therefore are essentially one coil. The reason for two windings is to
leave a space in the middle so the ferrite core can fit tightly
against the MP1903P4AS metallic core. Both of the MP1903P4AS cores are
wound in the same rotational direction so their inductance adds up,
not subtracts. So you can envision a wound toroid with an empty slot
down the entire middle. First the ferrite core is pulsed. Then the
Metglas MAGAMP core is pulsed immediately after. Across both coils is
a diode that goes to a capacitor to collect the energy from the
collapsing magnetic field. The timing & amount of current in each
toroid is critical. The ferrite core current should be kept low enough
so that it does not significantly saturate the MP1903P4AS core. The
MP1903P4AS core current should not be high enough such that it does
not significantly reduce the effective permeability of the ferrite
core. The LTSpice circuit is -->
Version 4
SHEET 1 880 680
WIRE -816 48 -832 48
WIRE -832 128 -928 128
WIRE -784 128 -832 128
WIRE -784 144 -784 128
WIRE -752 144 -784 144
WIRE -448 144 -464 144
WIRE 192 144 -160 144
WIRE -928 208 -928 192
WIRE -832 208 -928 208
WIRE -784 208 -832 208
WIRE -752 208 -784 208
WIRE -432 208 -464 208
WIRE -416 208 -432 208
WIRE -320 208 -336 208
WIRE -160 208 -160 144
WIRE -32 208 -160 208
WIRE 80 208 -32 208
WIRE -160 240 -160 208
WIRE -32 240 -32 208
WIRE 80 240 80 208
WIRE -848 272 -864 272
WIRE -752 272 -784 272
WIRE -432 272 -432 208
WIRE -432 272 -464 272
WIRE -912 336 -912 320
WIRE -752 336 -784 336
WIRE -448 336 -464 336
WIRE 144 336 144 304
WIRE 240 336 224 336
WIRE 240 368 240 336
WIRE -160 384 -160 320
WIRE -128 384 -160 384
WIRE -32 384 -32 320
WIRE -32 384 -64 384
WIRE -16 384 -32 384
WIRE 80 384 80 320
WIRE 80 384 48 384
WIRE -752 400 -784 400
WIRE -448 400 -464 400
WIRE -912 432 -912 416
WIRE -160 432 -160 384
WIRE 80 432 80 384
WIRE -784 464 -800 464
WIRE -752 464 -784 464
WIRE -448 464 -464 464
WIRE -96 512 -112 512
WIRE 144 512 128 512
WIRE -752 528 -784 528
WIRE -368 528 -368 464
WIRE -368 528 -464 528
WIRE -352 528 -368 528
WIRE -256 528 -272 528
WIRE -160 544 -160 528
WIRE 80 544 80 528
WIRE 80 544 -160 544
WIRE 192 544 80 544
FLAG -912 432 0
FLAG -912 320 V+
FLAG -784 528 0
FLAG -448 144 V+
FLAG -816 48 V+
FLAG -784 208 Trig
FLAG -784 464 Trig
FLAG -864 464 0
FLAG -864 272 0
FLAG -784 400 Out1
FLAG -448 464 Out2
FLAG -448 400 V+
FLAG -384 336 0
FLAG -784 336 V+
FLAG -320 208 V+
FLAG -96 512 Out1
FLAG 192 544 0
FLAG 144 512 Out2
FLAG 144 224 Out1
FLAG -256 528 Trig2
FLAG -368 400 0
FLAG 144 400 0
FLAG 192 144 V+
FLAG 240 432 Trig2
SYMBOL Misc\\battery -912 320 R0
WINDOW 123 0 0 Left 0
WINDOW 0 8 24 Left 0
WINDOW 3 8 90 Left 0
SYMATTR InstName V1
SYMATTR Value 13V
SYMATTR SpiceLine Rser=10m Cpar=10p
SYMBOL Misc\\TLC556 -608 240 R0
WINDOW 0 -3 103 Center 0
WINDOW 3 -2 128 Center 0
SYMATTR InstName U1
SYMATTR SpiceLine VDD=9V RONX=1.0
SYMBOL res -816 32 M0
WINDOW 3 34 66 Left 0
SYMATTR InstName R1
SYMATTR Value 33K
SYMBOL res -816 112 M0
WINDOW 0 30 44 Left 0
WINDOW 3 17 78 Left 0
SYMATTR InstName R2
SYMATTR Value 1Meg
SYMBOL diode -912 128 M0
WINDOW 0 14 68 Left 0
WINDOW 3 -35 93 Left 0
SYMATTR InstName D1
SYMATTR Value 1N914
SYMBOL cap -800 448 R90
WINDOW 0 0 32 VBottom 0
WINDOW 3 32 32 VTop 0
SYMATTR InstName C1
SYMATTR Value 2.2n
SYMBOL cap -784 256 R90
WINDOW 0 0 32 VBottom 0
WINDOW 3 32 32 VTop 0
SYMATTR InstName C2
SYMATTR Value 0.1µ
SYMBOL cap -448 320 M90
WINDOW 0 0 32 VBottom 0
WINDOW 3 32 32 VTop 0
SYMATTR InstName C3
SYMATTR Value 0.1µ
SYMBOL res -320 192 R90
WINDOW 0 0 56 VBottom 0
WINDOW 3 32 56 VTop 0
SYMATTR InstName R3
SYMATTR Value 3.3K
SYMBOL nmos -112 432 M0
WINDOW 0 -27 32 Left 0
WINDOW 3 57 71 VLeft 0
SYMATTR InstName M1
SYMATTR Value irf540n
SYMATTR Prefix X
SYMBOL ind -176 224 R0
SYMATTR InstName L1
SYMATTR Value ""
SYMATTR SpiceLine Rser=0.80 Rpar=100Meg Cpar=0
SYMBOL nmos 128 432 M0
WINDOW 0 -29 29 Left 0
WINDOW 3 57 84 VLeft 0
SYMATTR InstName M2
SYMATTR Value irf540n
SYMATTR Prefix X
SYMBOL ind 96 224 M0
SYMATTR InstName L2
SYMATTR Value ""
SYMATTR SpiceLine Rser=0.42 Rpar=100Meg Cpar=0
SYMBOL schottky -128 400 R270
WINDOW 0 32 32 VTop 0
WINDOW 3 -2 41 VBottom 0
SYMATTR InstName D2
SYMATTR Value 1N5404
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL res 128 208 R0
WINDOW 0 31 52 Left 0
WINDOW 3 31 50 Invisible 0
SYMATTR InstName R5
SYMATTR Value ""
SYMBOL res -256 512 R90
WINDOW 0 -18 27 VBottom 0
WINDOW 3 -23 29 VTop 0
SYMATTR InstName R6
SYMATTR Value 3.78K
SYMBOL schottky 48 400 M270
WINDOW 0 32 32 VTop 0
WINDOW 3 -1 29 VBottom 0
SYMATTR InstName D3
SYMATTR Value 1N5404
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL Digital\\inv 304 368 R90
WINDOW 0 25 74 VRight 0
SYMATTR InstName A1
SYMBOL Misc\\battery -32 336 R180
WINDOW 123 0 0 Left 0
WINDOW 0 8 24 Left 0
WINDOW 3 8 90 Invisible 0
SYMATTR InstName V2
SYMATTR Value 13V
SYMATTR SpiceLine Rser=10m Cpar=10p
SYMBOL res 240 320 R90
WINDOW 0 0 50 VBottom 0
WINDOW 3 21 45 Invisible 0
SYMATTR InstName R4
SYMBOL cap 128 336 R0
WINDOW 0 29 46 Left 0
WINDOW 3 24 64 Invisible 0
SYMATTR InstName C5
SYMBOL cap -384 400 R0
WINDOW 0 20 19 Left 0
WINDOW 3 18 52 Left 0
SYMATTR InstName C6
SYMATTR Value 10n
TEXT -784 88 Left 0 ;V1 & V2 are charged 1500uF capacitors
TEXT -272 72 Left 0 ;Set R4, R5, & C5 so Out2 pulse starts\nright
after Out1 pulse ends. Values will\nvary depending on A1 (CMOS
inverter).
--
You received this message because you are subscribed to the Google Groups "Energy Mover" group.
To post to this group, send email to
energ...@googlegroups.com.
To unsubscribe from this group, send email to
energymover...@googlegroups.com.
For more options, visit this group at
http://groups.google.com/group/energymover?hl=en.