Im making this thread, continuing from my previous one (Newbie Screwed Up) where I received tremendous help from those on this forum. I now have the AB 5/04 working, but the Panel Mate 1700 doesn't seem to communicate with the 504. The HMI connected to this brick is a Cutler Hammer Panel Mate Pro 1700. It lights up, the touch-screen buttons somewhat react to touching (might take a few strokes to react), but the functions do not react with the 5/04. I called the equipment manufacturer, and they basically said it is all obsolete equipment, no longer supported, etc. and we are SOL. But, for a mere $100K, we can send the unit back, and they'll install all "modern" control units !! Not an option. I get it that the unit is 10+ years old, but has very low cycle times on it. (maybe 400 hrs) It's my understanding that the HMIs are just that....a means of the operators telling the PLC what you want it to do.
So, my question .... is there an off the shelf software package that would emulate the Panel Mate 1700? All I need to "control" is to advance or retard two sets of heat seal rollers (via PacSci stepper motors), actuate two separate hole punch solenoids, and an air solenoid for a knife....it's basically a packaging machine. I do have a program called PMConfig , but I don't see any communications buttons or icons in that software, just screen shots of what shows up on the HMI, icon selection, change fonts / colors, etc.
PmConfig is part of the software for those screens it sounds to me like you need to match the port settings from the panelmate power pro to the PLC here is a screenshot of where to locate the port settings.
Copyright: 2015 Allen et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Funding: This work was supported by NSF grants 0963022 and 1255913, the Gordon and Betty Moore Foundation, the California Department of Fish and Wildlife, the University of California at Santa Cruz, and the University of California at Davis. M. Allen was supported by a Victoria University of Wellington tuition scholarship. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Reproductive success is essential for individual traits to transfer to, and hence modify, future generations [1], and therefore behaviours associated with reproduction are an important source of adaptation and evolution. How individuals select mates is complex and often involves multiple cues that vary among species [2,3], necessitating the development of species-specific behaviours and signals to advertise for and communicate with potential mates [4,5,6,7]. In order to understand the adaptive significance of behaviours used for mate selection, it is necessary to understand each cue and its associated function. However, the challenges associated with observing cues involved in mate selection of cryptic mammals such as solitary carnivores in natural environments have historically prevented detailed study of these behaviours [8,9].
Reproductive strategies in solitary carnivores are expected to vary between males and females. In these species, males are commonly polygynous and often significantly larger than females. Males are thought to compete with other males for territories that encompass the home ranges of multiple females and are believed to attempt to mate with every reproductive female residing within their territory [4,7,8,10,11]. Conversely, female solitary carnivores tend to overlap with few potential mates [8,12,13], and may primarily rely on carefully assessing cues to select a mate that best enhances survival of their offspring [2]. A key aspect of female mate selection is thought to be the body mass of potential mates. Larger mass in male carnivores appears to be selected for across generations as an indicator of greater fitness and physical dominance, both of which can be expressed via larger territories [8,9]. However, recent advances in our understanding of mate selection suggest that female selection is more complex than simplistic assessments of male ornamentation or mass [9].
The spatiotemporal dispersed structure of populations of solitary carnivores requires indirect methods to advertise for potential mates and communicate with competitors. Many solitary carnivores are thought to therefore communicate with competitors through indirect cues (i.e. scent marking and vocalizations) rather than through direct contact [8,13,14]. Felids are generally considered to have a poor sense of smell when compared to canids and ursids [8], but nevertheless, the most commonly observed form of indirect communication in solitary felids is scent marking [4,8,14]. Scent marking (e.g. via sprayed urine) potentially allows male felids to advertise their presence and residency status to other males and females whose home ranges they overlap [4,8,14,15]. Female solitary carnivores can then potentially visit scent marking areas used by multiple males and simultaneously assess potential mates.
Pumas (Puma concolor) are solitary, territorial felids, and primarily communicate through scent marking [8,16]. Pumas breed throughout the year [8,16], however, research suggests that parturitions in some areas peak in summer and early autumn [8,17,18]. For populations that experience peaks in parturitions, mating behaviour is also expected to peak (i.e. an additional 3 months earlier). Nevertheless, the potential for mating to occur throughout the year suggests that scent marking and other communication behaviours associated with mate selection, too, must occur throughout the year. Mate selection in pumas might be further complicated due to aggressive behaviours, including those causing injuries or death, of males towards females not in oestrus [8].
Our study area is 1,700 km2 in the Santa Cruz Mountains of California, including parts of Santa Cruz, San Mateo, and Santa Clara counties (Fig 1). The study area is bounded by the Pacific Ocean to the west, the city of San Jose to the north, the city of Santa Cruz to the south and Highway 101 to the east. An arterial highway (California Highway 17) bisects the study area. Vegetation characteristics and climatic conditions in the study area have been described in detail elsewhere [20,21].
Our protocols for the capture of pumas adhered to the guidelines outlined by the American Society of Mammalogists [22], and were approved by the Institutional Animal Care and Use Committee of the University of California, Santa Cruz (Protocols Wilmc0709 and Wilmc1101), and the Wildlife Investigations Lab of the California Department of Fish and Wildlife. Puma capture and handling protocols have been described in Wilmers et al. [21], and no pumas were ever killed/sacrificed as part of research methods. Pumas were not endangered, and permission to handle pumas was granted through a Memorandum of Understanding and Scientific Collecting Permit #11968 with the California Department of Fish and Wildlife.
Our research was carried out on a combination of public and private land. In each case, we approached the property owner for permission to access their property before entering. Public properties that required permits were California State Parks, the city of Santa Cruz, Midpeninsula Regional Open Space District, Penninsula Open Space Trust, and Santa Clara County Parks.
When possible, we identified the individual puma recorded in videos and placed them into demographic classes based on age (mature > 3.5 years or immature We removed immature pumas and mature females traveling with kittens from our analyses, as they were less regular visitors and tend to act as non-participants in mating behaviours [20]. To ensure spatio-temporally independent samples and minimize pseudo-replication, we pooled the data from cameras placed at community scrapes We used program R version 3.1.0 [29] for all statistical analyses. In each analysis we considered p Based on GPS location data, we estimated 95% local convex hull (LoCoH) home ranges [33] using the LoCoH tool in ArcMap (v. 10.1, ESRI, 2012). We separated locations into two yearly monitoring periods (from July 2011-June 2012 and July 2012-June 2013), and included any collared adult puma with a minimum of three months of monitoring during a given period, resulting in a mean of 1120 points ( 107 SE) to calculate each home range. We then documented each foray outside of the 95% home range during each monitoring period, where we considered a foray to be the presence of 2 or more continuous GPS locations > 1 km outside of the yearly 95% LoCoH home range (meanfemale = 37.9 km2 3.3 SE, meanmale = 115.7 km2 13.2 SE). We used a two-tailed t-test assuming equal variances to test for differences between male and female pumas, after first testing the data for normality and homoscedasticity. Finally, we determined the number of male pumas each female overlapped with during each annual monitoring period using the 95% LoCoH home ranges.
3a8082e126