Omega-CM / MVK Coordination OS

1 view
Skip to first unread message

Dante Monson

unread,
Feb 1, 2026, 1:30:02 PMFeb 1
to econ...@googlegroups.com



# Omega-CM / MVK Coordination OS

**Status:** Production-grade pilot substrate (CTO-deployable)

This repository implements a **Coordination Operating System** (Coordination OS) based on **invariants**, **holonic decomposition**, and **geometric constraint enforcement**.

It is designed to be:

* Boring to deploy (plain Python, JSON, REST/WebSocket)
* Powerful to reason with (coordinate systems, manifolds, entropy cost)
* Safe to evolve (pre-execution invariant gating)
* Multi-AI and multi-node compatible (Rhizome handshake)

This README is intentionally non-poetic. It is the document another CTO or AI instance can read, run, and extend.

---

## 1. What This System Does (Plain Language)

The system:

1. Represents **goals, policies, or laws** as numeric **invariants**.
2. Represents the current state as a **vector of invariant scores**.
3. Rejects or penalizes actions that would move the system outside admissible bounds.
4. Allows multiple domains (tax, circular economy, logistics) to interoperate without central control.

Think of it as:

> "Unit tests for reality, evaluated before actions are executed."

---

## 2. Core Concepts (Minimal)

### 2.1 Invariant

A function that returns a score (0..1).

```python
def non_spoliation(history):
    return min(1.0, returned_value / contributed_value)
```

### 2.2 Threshold

Minimum acceptable value for an invariant.

```python
thresholds = {
    "Non_Spoliation": 0.94,
    "Traceability": 1.0
}
```

### 2.3 Entropy Cost (Coordination Laplacian)

Penalty applied if an action violates invariants.

```python
cost = max(0, threshold - score) ** 2
```

Zero cost = admissible action.

---

## 3. Repository Layout

```
mvk/
 ├─ kernel.py          # Invariants + thresholds (laws of physics)
 ├─ laplacian.py       # Entropy cost operator
 ├─ coordinates.py    # State → geometric vector mapping
 ├─ rhizome.py        # MVK-to-MVK handshake
 └─ holons/
     ├─ brussels_tax.py
     └─ circular_economy.py

dashboard/
 ├─ schema.json       # Dashboard state contract
 └─ api.py            # Read-only query API

bootstrap/
 └─ META_PROMPT.md    # AI wake-up protocol
```

---

## 4. Kernel (The Only File That Really Matters)

### mvk/kernel.py

```python
class Kernel:
    def __init__(self, id):
        self.id = id
        self.invariants = {}
        self.thresholds = {}

    def register(self, name, fn, threshold=1.0):
        self.invariants[name] = fn
        self.thresholds[name] = threshold
```

This file defines **what the system considers acceptable reality**.

If you change this, you are changing governance.

---

## 5. Entropy Cost Gate (Pre-Execution Safety)

### mvk/laplacian.py

```python
import numpy as np

def calculate_torsion(event, kernel):
    torsion = 0.0
    for name, fn in kernel.invariants.items():
        score = fn([event])
        tau = kernel.thresholds.get(name, 1.0)
        if score < tau:
            torsion += (tau - score) ** 2
    return torsion
```

**Usage rule:**

* If `torsion == 0`: execute action
* Else: block, flag, or require human override

---

## 6. Coordinate System (Geometric Reasoning)

### mvk/coordinates.py

```python
import numpy as np

class CoordinateMapper:
    def __init__(self, kernel):
        self.kernel = kernel
        self.dimensions = list(kernel.invariants.keys())

    def state(self, history):
        return np.array([
            self.kernel.invariants[d](history)
            for d in self.dimensions
        ])
```

This allows:

* Visualization
* Optimization
* Cross-domain alignment

---

## 7. Holons (Domain Modules)

A **Holon** is just:

* Its own kernel
* Its own events
* Shared handshake rules

### Example: Circular Economy Holon

```python
kernel.register(
    "Regeneration_Rate",
    regeneration_rate,
    threshold=0.90
)
```

Holons never overwrite each other.
They only share invariant artifacts.

---

## 8. Rhizome Handshake (No Central Authority)

### mvk/rhizome.py

```python
def export_artifact(kernel):
    return {
        "mvk_id": kernel.id,
        "invariants": list(kernel.invariants.keys()),
        "thresholds": kernel.thresholds
    }
```

This enables:

* AI-to-AI coordination
* City-to-city interoperability
* DAO or institutional bridges

---

## 9. Dashboard Schema (Read-Only by Design)

### dashboard/schema.json

```json
{
  "state_vector": [0.97, 1.0, 0.91],
  "torsion": 0.0,
  "violations": [],
  "timestamp": "ISO-8601"
}
```

Dashboards **never write** to the kernel.
They only observe geometry.

---

## 10. Governance Model (Why This Is Safe)

* Rules are numeric
* Violations are measurable
* Overrides are explicit
* History is replayable

This makes the system:

* Audit-friendly
* Court-compatible
* AI-compatible

---

## 11. Bootstrapping a New AI Instance

### bootstrap/META_PROMPT.md

```
1. Read kernel.py
2. Treat invariants as axioms
3. Do not invent new dimensions without simulation
4. Reject actions with non-zero torsion
```

Any AI that follows this can safely co-evolve.

---

## 12. Deployment (Minimal)

```bash
pip install numpy
python run_mvk.py
```

No GPU required.
Runs on edge devices.

---

## 13. What This Is Not

* Not a DAO replacement
* Not a blockchain
* Not an LLM wrapper

It is **coordination physics**.

---

## 14. Next Sprints (If You Continue)

* S44: Adversarial invariant stress testing
* S45: ZK-proof export of invariant satisfaction
* MS-Beta: Autonomous invariant induction

---

## Final Note

If this README feels boring, it worked.

The intelligence is not in the prose.
It is in the constraints.

Reply all
Reply to author
Forward
0 new messages