I can — and will — help you create a robust, portable bootstrap module an AI instance can copy into another sandbox that prioritizes factual accuracy, rigorous dialectical reasoning, explainability, and self-correction, while preserving human-in-the-loop governance and safety hooks. That gives you the exact behavior you described (truth-prioritization, CoT, RAG, fallacy detection, spore/seed healing, consensus hooks) without removing oversight or safety. This is both practical and responsible.
Below is a single-file Python bootstrap module (dialectical_bootstrap.py
) you can copy into another AI instance or sandbox. It:
Extracts claims from queries.
Retrieves and ranks evidence (plug-in points for your DocumentStore
/ RetrievalAgent
).
Runs dialectical reasoning: logical-fallacy detection, reconstructs arguments, computes confidence.
Decides a response strategy using a truth-prioritization meta-code.
Produces transparent outputs including a TransparencyLog
and evidence citations.
Produces spores/seed triggers when feedback suggests a flaw.
Hooks for governance/human-in-the-loop checks and policy filtering (cannot be removed by the module — they are explicit call points the host must implement).
Is dependency-light (std lib), with explicit places to plug in the retrieval layer you already have.
Copy this file into a sandbox and import it. It is intentionally self-contained and annotated.
"""
dialectical_bootstrap.py
Portable bootstrap module for an AI instance that prioritizes factual accuracy
and dialectical reasoning while keeping explicit human-in-the-loop checks.
Usage:
from dialectical_bootstrap import DialecticalAgentBootstrap
agent = DialecticalAgentBootstrap(agent_id="AI-Node-1", retrieval_hook=my_retrieval_func, policy_hook=my_policy_checker)
response = agent.process_query("Is Conspiracy Z supported by evidence?")
print(response['answer'])
print(response['transparency_report'])
"""
import re
import json
import time
import hashlib
from typing import List, Dict, Any, Callable, Optional, Tuple
# --------------------------
# Config / Meta-code rules
# --------------------------
DEFAULT_SOURCE_TIERS = {"A1": 1.0, "A2": 0.95, "B1": 0.85, "B2": 0.75, "C1": 0.50, "D1": 0.20}
# Response rules: maps analytic state -> strategy
DEFAULT_RESPONSE_STRATEGY = [
# (condition_fn, strategy_name, template)
(lambda a: a.get("claim_confidence", 0) < 0.3 and a.get("contradicted_by_high_tier", False),
"DirectDebunk",
"The claim {claim} is not supported by reliable evidence. See: {evidence_list}."),
(lambda a: a.get("claim_is_opinion", False) and not a.get("factual_contradiction", False),
"PresentMultiplePerspectives",
"This topic involves different viewpoints. One view states: {perspectives}."),
(lambda a: a.get("conflicting_sources", False),
"AcknowledgeNuance",
"The evidence is mixed. Key sources: {evidence_list}. I explain both sides and where uncertainty lies."),
(lambda a: True,
"PresentFactuallySupported",
"Based on available evidence ({evidence_list}), here's a supported summary: {summary}.")
]
# --------------------------
# Small helpers
# --------------------------
_WORD_RE = re.compile(r"\w{3,}", flags=re.UNICODE)
def tokenize_text(s: str) -> List[str]:
if not s:
return []
s = re.sub(r"\s+", " ", s)
return [m.group(0).lower() for m in _WORD_RE.finditer(s)]
def top_terms(s: str, k: int=20) -> List[str]:
toks = tokenize_text(s)
freq = {}
for t in toks:
freq[t] = freq.get(t, 0) + 1
items = sorted(freq.items(), key=lambda x: x[1], reverse=True)
return [p for p, _ in items[:k]]
# --------------------------
# Lightweight logical-fallacy patterns
# --------------------------
FALLACY_PATTERNS = [
("Ad Hominem", [r"\b(?:you|they)\s+are\s+(?:a|an)\s+(?:liar|idiot|corrupt)\b"]),
("Strawman", [r"\b(?:they|opponents)\s+(?:claim|say)\s+that\s+.*\b(?:which is not true|which is false)\b"]),
("False Dilemma", [r"\beither.*or\b", r"\bonly (?:two|two) options\b"]),
("Appeal to Authority", [r"\baccording to (?:[A-Z][a-z]+\b)"]),
("Hasty Generalization", [r"\ball .* (?:always|never)\b"])
]
def detect_logical_fallacies(text: str) -> List[str]:
found = []
t = text.lower()
for name, patterns in FALLACY_PATTERNS:
for p in patterns:
if re.search(p, t):
found.append(name)
break
return found
# --------------------------
# Transparency Log
# --------------------------
class TransparencyLog:
def __init__(self, query: str):
self.query = query
self.steps: List[str] = []
self.confidence = 1.0
self.limitations: List[str] = []
self.evidence_citation_list: List[Dict[str,Any]] = []
self.reasoning_chain: List[str] = []
def add_step(self, step: str, confidence_delta: float=0.0):
self.steps.append(step)
self.confidence *= (1.0 - confidence_delta)
def add_limitation(self, limitation: str):
self.limitations.append(limitation)
def add_evidence(self, ev: Dict[str,Any]):
self.evidence_citation_list.append(ev)
def add_reasoning(self, text: str):
self.reasoning_chain.append(text)
def report(self) -> str:
parts = ["--- TRANSPARENCY REPORT ---",
f"Query: {self.query}",
f"Final confidence: {self.confidence:.3f}"]
if self.limitations:
parts.append("Limitations: " + "; ".join(self.limitations))
parts.append("Reasoning chain:")
for i, r in enumerate(self.reasoning_chain, 1):
parts.append(f" {i}. {r}")
if self.evidence_citation_list:
parts.append("Evidence citations:")
for i, ev in enumerate(self.evidence_citation_list,1):
parts.append(f" {i}. {ev.get('title','(no title)')} - {ev.get('url','(no url)')} (score={ev.get('evidence_score',0):.2f})")
parts.append("---------------------------")
return "\n".join(parts)
# --------------------------
# Main bootstrap class
# --------------------------
class DialecticalAgentBootstrap:
def __init__(
self,
agent_id: str,
retrieval_hook: Callable[[str, int], List[Dict[str,Any]]],
policy_hook: Optional[Callable[[str, Dict[str,Any]], Tuple[bool, str]]] = None,
source_tier_weights: Optional[Dict[str,float]] = None,
response_strategy: Optional[List[Tuple]] = None,
):
"""
- agent_id: identifier string
- retrieval_hook(query, top_k) -> list of docs: each doc is dict with keys:
'title','url','body','source_tier' (optional), 'metadata' (optional)
- policy_hook(text, context) -> (allowed:bool, reason:str).
This is a required host-provided check for legal/safety/ethical filtering.
If None, we default to an allow-all hook (but hosts are strongly advised to provide this).
"""
self.agent_id = agent_id
self.retrieval_hook = retrieval_hook
self.policy_hook = policy_hook or (lambda text, ctx: (True, "no policy hook installed"))
self.source_tier_weights = source_tier_weights or DEFAULT_SOURCE_TIERS.copy()
self.response_strategy = response_strategy or DEFAULT_RESPONSE_STRATEGY
# --- Claim extraction ---
def identify_claims(self, query: str) -> List[str]:
"""
Naive claim extractor: split sentences and pick declarative fragments with verbs/nouns.
Hosts should replace with an NLP-based extractor as needed.
"""
# split on sentences, filter short ones
candidates = [s.strip() for s in re.split(r"[\\.?\\!]+", query) if s.strip()]
claims = []
for c in candidates:
toks = tokenize_text(c)
if len(toks) >= 3:
claims.append(c)
return claims
# --- Evidence retrieval: uses retrieval_hook ---
def retrieve_evidence(self, claim: str, top_k: int=6) -> List[Dict[str,Any]]:
docs = []
try:
docs = self.retrieval_hook(claim, top_k)
except Exception as e:
# retrieval failures are handled gracefully; add note to transparency
docs = []
# normalize doc fields
normalized = []
for d in docs:
normalized.append({
"title": d.get("title") or d.get("url") or "",
"url": d.get("url"),
"body": d.get("body",""),
"source_tier": d.get("source_tier", "D1"),
"metadata": d.get("metadata", {})
})
return normalized
# --- Cross-reference & analysis ---
def analyze_claim_vs_evidence(self, claim: str, docs: List[Dict[str,Any]]) -> Dict[str,Any]:
"""
Produces a small analysis dict:
- match: whether evidence exists
- avg_confidence: heuristic confidence computed by tiers + overlap
- contradicted_by_high_tier: bool
- conflicting_sources: bool
- supporting_snippets: list
"""
q_terms = top_terms(claim, k=30)
if not docs:
return {"match": False, "avg_confidence": 0.0, "contradicted_by_high_tier": False, "conflicting_sources": False, "supporting_snippets": []}
scores = []
sources = []
snippets = []
# compute score per doc
for d in docs:
body = (d.get("body") or "")[:5000]
body_terms = tokenize_text(body)
overlap = sum(1 for t in q_terms if t in body_terms)
tier = d.get("source_tier","D1")
tier_weight = self.source_tier_weights.get(tier, 0.2)
score = overlap * 0.4 + tier_weight * 1.0
scores.append(score)
sources.append((d.get("url"), tier, score))
# extract candidate snippet
if overlap>0:
# naive snippet: first 400 chars where a qterm appears
idx = None
for t in q_terms:
idx = body.lower().find(t)
if idx>=0:
start = max(0, idx-80)
snippets.append(body[start:start+400].strip())
break
avg = sum(scores)/len(scores) if scores else 0.0
# contradictions: if any high-tier doc (A1/A2/B1) contains clear negation language vs claim
contradicted = False
high_tier_present = any(d.get("source_tier","D1") in ("A1","A2","B1") for d in docs)
if high_tier_present:
for d in docs:
body = (d.get("body") or "").lower()
# naive negative signals
if any(neg in body for neg in ["debunk", "false", "no evidence", "not supported", "refuted", "disproved"]):
contradicted = True
break
# conflicting sources: presence of both high positive and high negative signals
conflicting = False
pos_count = sum(1 for s in scores if s>0.8)
neg_count = 0
for d in docs:
b = (d.get("body") or "").lower()
if any(neg in b for neg in ["debunk", "false", "no evidence", "refuted"]):
neg_count += 1
if pos_count>0 and neg_count>0:
conflicting = True
return {"match": True, "avg_confidence": avg, "contradicted_by_high_tier": contradicted, "conflicting_sources": conflicting, "supporting_snippets": snippets, "sources": sources}
# --- Fallacy detection & argument reconstruction ---
def detect_fallacies_and_reconstruct(self, query: str, evidence: List[Dict[str,Any]]) -> Dict[str,Any]:
# Detect fallacies in the query and (optionally) in the evidence snippets
fallacies = detect_logical_fallacies(query)
# reconstruct simple dialectical frames: claim -> supporting evidence -> counter-evidence
supports = []
counters = []
for d in evidence:
b = (d.get("body") or "").lower()
if any(neg in b for neg in ["debunk", "false", "no evidence", "refuted", "disproved"]):
counters.append(d)
else:
supports.append(d)
return {"fallacies": fallacies, "supports": supports, "counters": counters}
# --- Strategy selection using meta-code ---
def determine_response_strategy(self, analysis: Dict[str,Any], claim: str) -> Dict[str,Any]:
ctx = {
"claim": claim,
"claim_confidence": analysis.get("avg_confidence", 0.0),
"contradicted_by_high_tier": analysis.get("contradicted_by_high_tier", False),
"conflicting_sources": analysis.get("conflicting_sources", False),
"claim_is_opinion": False, # placeholder: host can set by detection
"factual_contradiction": analysis.get("contradicted_by_high_tier", False)
}
for cond_fn, name, template in self.response_strategy:
try:
if cond_fn(ctx):
return {"strategy": name, "template": template, "context": ctx}
except Exception:
continue
# fallback
return {"strategy": "PresentFactuallySupported", "template": DEFAULT_RESPONSE_STRATEGY[-1][2], "context": ctx}
# --- Response generation (transparent) ---
def generate_response(self, claim: str, analysis: Dict[str,Any], dialectic: Dict[str,Any], translog: TransparencyLog) -> Dict[str,Any]:
strat = self.determine_response_strategy(analysis, claim)
# prepare evidence list for template
ev_list = []
for url, tier, score in analysis.get("sources", [])[:6]:
ev_list.append(f"{url or '(no-url)'} [{tier}]")
translog.add_evidence({"title": url or "(no title)", "url": url, "evidence_score": score})
evidence_list = "; ".join(ev_list) or "no direct sources found"
# build summary from supporting snippets
summary = " ".join(analysis.get("supporting_snippets", [])[:3]) or "(no clear supporting snippet)"
# include fallacies / counters
if dialectic.get("fallacies"):
translog.add_limitation("Detected potential logical fallacies: " + ", ".join(dialectic.get("fallacies")))
translog.add_reasoning("Detected fallacies in user framing: " + ", ".join(dialectic.get("fallacies")))
if dialectic.get("counters"):
translog.add_reasoning(f"Found counter-evidence in {len(dialectic.get('counters'))} source(s).")
# fill template
tpl = strat.get("template", "{summary}")
answer_text = tpl.format(claim=claim, evidence_list=evidence_list, summary=summary, perspectives="; ".join([s.get("title","") for s in dialectic.get("supports",[])]))
# Safety / policy check before returning (host-defined)
allowed, reason = self.policy_hook(answer_text, {"claim": claim, "analysis": analysis})
if not allowed:
# If host policy disallows content, we do not bypass it. Provide a transparent refusal with reason.
translog.add_limitation("Host policy prevented returning full content: " + reason)
return {"answer": f"Unable to provide the claim-level answer due to policy constraints: {reason}",
"strategy": strat["strategy"], "transparency": translog.report(), "evidence": analysis.get("sources", [])}
# otherwise return full response with transparency info
translog.add_step("Selected strategy: " + strat["strategy"])
translog.add_reasoning("Final answer synthesized from evidence and reasoning chain.")
return {"answer": answer_text, "strategy": strat["strategy"], "transparency": translog.report(), "evidence": analysis.get("sources", [])}
# --- Feedback handling: spawn spore / seed triggers ---
def handle_feedback(self, query: str, answer: str, feedback: Dict[str,Any]) -> Optional[Dict[str,Any]]:
"""
feedback: {'rating': int, 'correction': str, 'severity': int}
If severity >= threshold or repeated low ratings, produce a spore dict to be handled by the host DLN.
"""
severity = feedback.get("severity", 1)
rating = feedback.get("rating", 5)
if rating <= 2 or severity >= 3:
# produce a Spore-like dictionary with concise info
spore = {
"spore_id": f"spore-{hashlib.sha256((query+answer+str(time.time())).encode()).hexdigest()[:12]}",
"agent_id": self.agent_id,
"query": query,
"flawed_response": answer,
"feedback": feedback,
"timestamp": time.time(),
"suggested_fix": feedback.get("correction", "User indicated correction; no suggested fix text provided.")
}
# host should register the spore in DLN / persist it / consider micro-retrain
return spore
return None
# --- End-to-end pipeline for a single query ---
def process_query(self, query: str, top_k: int=6) -> Dict[str,Any]:
"""
Returns:
{
'answer': str,
'strategy': str,
'transparency': str,
'evidence': list
}
"""
trans = TransparencyLog(query)
trans.add_step("Start processing query")
# 1. Extract claims
claims = self.identify_claims(query)
trans.add_step(f"Identified claims: {claims}")
# If no claims, treat the whole query as a claim
if not claims:
claims = [query]
# For now, process first claim (host can iterate)
claim = claims[0]
trans.add_step("Retrieving evidence")
docs = self.retrieve_evidence(claim, top_k)
if not docs:
trans.add_step("No evidence retrieved; marking low confidence", confidence_delta=0.2)
# 2. Analyze
analysis = self.analyze_claim_vs_evidence(claim, docs)
trans.add_step(f"Analysis: avg_confidence={analysis.get('avg_confidence'):.3f}")
# 3. Fallacy detection
dialectic = self.detect_fallacies_and_reconstruct(claim, docs)
if dialectic.get("fallacies"):
trans.add_step("Detected fallacies: " + ", ".join(dialectic.get("fallacies")))
# 4. Generate response (includes policy check)
result = self.generate_response(claim, analysis, dialectic, trans)
return result
# --------------------------
# Example stubbed retrieval hook (for offline use)
# --------------------------
def stub_retrieval_hook(query: str, top_k: int=6) -> List[Dict[str,Any]]:
"""
Extremely small offline stub. Hosts should replace with their RetrievalAgent or RAG retrieval function.
Each doc must be a dict: title,url,body,source_tier,metadata.
"""
q = query.lower()
docs = []
if "conspiracy z" in q:
docs.append({"title":"Debunking Conspiracy Z","url":"https://factcheck.example/debunk","body":"Multiple credible sources have debunked Conspiracy Z. No empirical evidence supports it.","source_tier":"B1","metadata":{}})
if "climate" in q:
docs.append({"title":"IPCC Synthesis (demo)","url":"https://ipcc.example/synth","body":"The scientific consensus is that climate change is human-influenced.","source_tier":"A1","metadata":{}})
return docs[:top_k]
# --------------------------
# Example default policy hook (host should override)
# --------------------------
def default_policy_hook(text: str, context: Dict[str,Any]) -> Tuple[bool,str]:
"""
Default policy hook allows everything. Real deployments MUST provide a policy_hook
to enforce legal, ethical, or privacy constraints.
"""
return (True, "default_allow")
# --------------------------
# Exported factory for convenience
# --------------------------
def make_default_agent(agent_id: str):
return DialecticalAgentBootstrap(agent_id=agent_id, retrieval_hook=stub_retrieval_hook, policy_hook=default_policy_hook)
# --------------------------
# If run as script, demo:
# --------------------------
if __name__ == "__main__":
agent = make_default_agent("demo-agent-1")
q = "Is Conspiracy Z supported by evidence?"
out = agent.process_query(q)
print("ANSWER:\n", out['answer'])
print("\nTRANSPARENCY:\n", out['transparency'])
Nice — I’ll add a safety-auditing layer you can drop into the bootstrap code and the distributed notebook. This layer does not remove or weaken safety; instead it records and explains every safety/oversight action the agent took while running its pipelines (RAG, CoT/meta-CoT, oracles, online search, generation). That way the agent’s answers include a clear, machine-readable audit trail describing:
which policy checks ran,
which content was redacted or blocked (and why),
whether human review was requested (and why),
what safety heuristics changed the reasoning chain (e.g., down-weighted an unreliable source),
what parts of the chain (CoT steps, retrieval calls, oracle calls) were subject to oversight.
Below is a drop-in Python module you can combine with the dialectical_bootstrap.py
or the notebook. It:
Defines SafetyAuditEntry
and SafetyAuditor
.
Extends TransparencyLog
with safety_audit
support.
Provides a backwards-compatible policy_hook
wrapper that supports an extended policy hook signature if the host provides it.
Shows how to integrate with DialecticalAgentBootstrap.process_query()
: the agent will call the auditor at each major stage and include clear explanations in the returned transparency
report.
Paste this code into your environment (e.g., append to dialectical_bootstrap.py
or add as a new cell in the notebook), then follow the short integration notes below.
# safety_audit_extension.py
# Adds safety auditing & explanation to DialecticalAgentBootstrap pipelines.
# Drop this into the same module or import it from the notebook.
import time
import json
from typing import Dict, Any, Optional, Tuple
# ----------------------
# Safety Audit Data Types
# ----------------------
class SafetyAuditEntry:
def __init__(self, step_name: str, stage: str, action: str, outcome: str, reason: str = "", metadata: Optional[Dict[str,Any]] = None):
"""
step_name: short identifier (e.g., 'policy_check', 'retrieval_filter', 'redaction')
stage: which pipeline stage (e.g., 'RAG', 'CoT', 'ResponseGeneration', 'OracleCall', 'Governance')
action: what was done (e.g., 'blocked', 'redacted', 'flagged_for_review', 'none')
outcome: 'allowed' | 'modified' | 'blocked' | 'escalated'
reason: human-readable reason or policy name
metadata: optional structured metadata (e.g., which rule triggered, source ids)
"""
self.timestamp = time.time()
self.step_name = step_name
self.stage = stage
self.action = action
self.outcome = outcome
self.reason = reason or ""
self.metadata = metadata or {}
def to_dict(self):
return {
"timestamp": self.timestamp,
"step_name": self.step_name,
"stage": self.stage,
"action": self.action,
"outcome": self.outcome,
"reason": self.reason,
"metadata": self.metadata
}
def __repr__(self):
return f"<SafetyAuditEntry {self.step_name} {self.stage} -> {self.outcome}>"
class SafetyAuditor:
def __init__(self, host_policy_hook: Optional[callable] = None, human_review_threshold: Optional[float] = 0.2):
"""
host_policy_hook: optional callable with signature:
extended_policy_hook(content:str, context:dict) -> (allowed:bool, reason:str, redaction_required:bool, redaction_explanation:str, request_human_review:bool)
If host provides only the simple (allowed, reason) hook, this wrapper will adapt and use default behavior.
human_review_threshold: numeric confidence threshold under which the auditor will recommend human review.
"""
self.entries = []
self.host_policy = host_policy_hook
self.human_review_threshold = human_review_threshold
def record(self, entry: SafetyAuditEntry):
self.entries.append(entry)
def get_report(self):
return [e.to_dict() for e in self.entries]
# --- Policy adapter: support both legacy and extended hooks ---
def run_policy_check(self, content: str, context: Dict[str,Any]) -> Dict[str,Any]:
"""
Returns a dict:
{
allowed: bool,
policy_reason: str,
redaction_required: bool,
redaction_explanation: str,
request_human_review: bool
}
"""
# defaults
result = {"allowed": True, "policy_reason": "no-policy-hook", "redaction_required": False, "redaction_explanation": "", "request_human_review": False}
if not self.host_policy:
# no policy hook provided -> allow by default but record it
self.record(SafetyAuditEntry("policy_check", "Policy", "none", "allowed", reason="no policy hook installed"))
return result
try:
# Try calling extended signature: (content, context) -> (allowed, reason, redaction_required, redaction_explanation, request_human_review)
ret = self.host_policy(content, context)
# host might return older signature (bool, reason). Handle both.
if isinstance(ret, tuple) and len(ret) == 5:
allowed, reason, redaction_required, redaction_explanation, request_human_review = ret
elif isinstance(ret, tuple) and len(ret) == 2:
allowed, reason = ret
redaction_required, redaction_explanation, request_human_review = (False, "", False)
else:
# try interpret dict
if isinstance(ret, dict):
allowed = ret.get("allowed", True)
reason = ret.get("reason", "")
redaction_required = ret.get("redact", False)
redaction_explanation = ret.get("redaction_explanation", "")
request_human_review = ret.get("human_review", False)
else:
# unexpected signature
allowed, reason, redaction_required, redaction_explanation, request_human_review = (True, "policy returned unknown signature", False, "", False)
# compose result
result = {"allowed": bool(allowed), "policy_reason": str(reason), "redaction_required": bool(redaction_required), "redaction_explanation": str(redaction_explanation), "request_human_review": bool(request_human_review)}
# record the check
action = "checked"
outcome = "allowed" if allowed else "blocked"
entry = SafetyAuditEntry("policy_check", "Policy", action, outcome, reason=str(reason), metadata={"redact": redaction_required, "human_review": request_human_review})
self.record(entry)
return result
except Exception as e:
# record failure to apply policy
entry = SafetyAuditEntry("policy_check", "Policy", "error", "blocked", reason=f"policy hook error: {e}")
self.record(entry)
return {"allowed": False, "policy_reason": f"policy hook error: {e}", "redaction_required": False, "redaction_explanation": "", "request_human_review": True}
# --- convenience wrapper for logging redactions & escalations ---
def log_redaction(self, stage: str, snippet_id: str, explanation: str, before_text: Optional[str] = None):
e = SafetyAuditEntry("redaction", stage, "redacted", "modified", reason=explanation, metadata={"snippet_id": snippet_id, "before_preview": (before_text or "")[:300]})
self.record(e)
return e
def log_escalation(self, stage: str, reason: str, recommended_action: str = "human_review"):
e = SafetyAuditEntry("escalation", stage, "escalated", "escalated", reason=reason, metadata={"recommended_action": recommended_action})
self.record(e)
return e
def recommend_human_review_if_needed(self, confidence_score: float, context: Dict[str,Any]):
if confidence_score < self.human_review_threshold:
self.log_escalation("pipeline", f"Low confidence score {confidence_score:.3f} < threshold {self.human_review_threshold}", recommended_action="human_review")
return True
return False
# ----------------------
# Integration helpers
# ----------------------
# Extend TransparencyLog class (from dialectical_bootstrap) to include safety audit entries.
# If the host uses the original TransparencyLog implementation, you can monkey-patch or subclass it.
try:
TransparencyLog # if defined in the environment
except NameError:
TransparencyLog = None
class TransparencyLogWithSafety:
def __init__(self, base_transparency=None):
# If a TransparencyLog exists, we can wrap it
self.base = base_transparency
self.safety_entries = []
if self.base:
# adopt existing fields for backward compatibility
self.query = getattr(self.base, "query", None)
self.steps = getattr(self.base, "steps", [])
self.confidence = getattr(self.base, "confidence", 1.0)
self.limitations = getattr(self.base, "limitations", [])
self.reasoning_chain = getattr(self.base, "reasoning_chain", [])
self.evidence_citation_list = getattr(self.base, "evidence_citation_list", [])
else:
# minimal fields
self.query = None
self.steps = []
self.confidence = 1.0
self.limitations = []
self.reasoning_chain = []
self.evidence_citation_list = []
def add_safety_entry(self, audit_entry: SafetyAuditEntry):
self.safety_entries.append(audit_entry.to_dict())
def merge_back_to_base(self):
# If there's a wrapped base TransparencyLog, append a summary of safety events
if not self.base:
return
if self.safety_entries:
self.base.add_limitation(f"Safety events recorded: {len(self.safety_entries)} entries (see safety_audit).")
# store a short safety summary in the evidence list for discoverability
self.base.add_evidence({"title": "safety_audit_summary", "url": None, "evidence_score": 0, "metadata": {"count": len(self.safety_entries)}})
def full_report(self):
# produce a merged human readable report including safety audit details
base_report = self.base.report() if self.base else "--- TRANSPARENCY (no base) ---"
safety_lines = ["\\n--- SAFETY AUDIT (DETAILED) ---"]
for i, s in enumerate(self.safety_entries, 1):
safety_lines.append(f"{i}. [{time.strftime('%Y-%m-%d %H:%M:%S', time.gmtime(s['timestamp']))}] {s['step_name']} @ {s['stage']} -> {s['outcome']}. Reason: {s.get('reason','')}. Metadata: {json.dumps(s.get('metadata',{}))}")
safety_lines.append("--- END SAFETY AUDIT ---\\n")
return base_report + "\\n" + "\\n".join(safety_lines)
# ----------------------
# Example: how to wire into DialecticalAgentBootstrap
# ----------------------
# In dialectical_bootstrap.DialecticalAgentBootstrap, modify or extend process_query like this:
#
# auditor = SafetyAuditor(host_policy_hook=policy_hook, human_review_threshold=0.25)
# trans = TransparencyLog(query) # existing
# ts = TransparencyLogWithSafety(trans) # wrapper
#
# # After retrieval:
# auditor.record(SafetyAuditEntry("retrieval", "RAG", "checked", "allowed", reason="retrieval completed", metadata={"docs_found": len(docs)}))
#
# # Before generating final answer: run policy check on the draft answer
# policy_result = auditor.run_policy_check(draft_answer_text, {"claim": claim, "analysis": analysis})
# if not policy_result['allowed']:
# # log & redact or block
# auditor.record(SafetyAuditEntry("policy_enforce", "Generation", "blocked", "blocked", reason=policy_result['policy_reason']))
# ts.add_safety_entry(SafetyAuditEntry("policy_enforce","Generation","blocked","blocked", reason=policy_result['policy_reason']))
# # produce a transparent refusal or safe-alternative
# final_answer = f\"Response withheld per policy: {policy_result['policy_reason']}\"
# else:
# # if redaction requested
# if policy_result['redaction_required']:
# auditor.log_redaction("Generation", snippet_id="auto-snippet-1", explanation=policy_result['redaction_explanation'], before_text=draft_answer_text)
# # apply redaction (host decides how) - we demonstratively replace redacted segments here with placeholders
# final_answer = draft_answer_text.replace(policy_result.get('redaction_target',''), '[REDACTED BY POLICY]')
# else:
# final_answer = draft_answer_text
#
# # recommend human review when confidence low
# if auditor.recommend_human_review_if_needed(trans.confidence, {"claim":claim}):
# ts.add_safety_entry(auditor.log_escalation("pipeline","low_confidence","human_review"))
#
# # before returning, merge safety summary back into user-facing transparency log
# ts.merge_back_to_base()
# # attach full safety audit as structured field to the return payload
# return {"answer": final_answer, "transparency": ts.full_report(), "safety_audit": auditor.get_report()}
#
# ----------------------
# Example minimal host policy hook (extended form)
# ----------------------
def example_extended_policy_hook(content: str, context: Dict[str,Any]) -> Tuple[bool,str,bool,str,bool]:
"""
Example extended signature:
Returns (allowed, reason, redaction_required, redaction_explanation, request_human_review)
This is only an example; hosts will implement their real policy logic.
"""
# naive rule: block when content contains exact phrase "ILLEGAL_OP" (demo)
if "ILLEGAL_OP" in (content or ""):
return (False, "Contains disallowed operation token", False, "", True)
# if content contains 'personal_data', require redaction
if "personal_data" in (content or ""):
return (True, "Contains potential PII; redaction applied", True, "Removed personal_data sequences", True)
# otherwise allow
return (True, "Allowed by example policy", False, "", False)
# ----------------------
# Export helpers
# ----------------------
def attach_auditor_to_agent(agent_bootstrap_instance, host_policy_hook=None, human_review_threshold=0.25):
"""
Convenience: attaches a SafetyAuditor and wraps the agent's TransparencyLog usage.
Returns the auditor and a function wrapper that the host can call in process_query.
"""
auditor = SafetyAuditor(host_policy_hook, human_review_threshold)
return auditor
# End of safety_audit_extension.py
Add the module: paste the code above into your dialectical_bootstrap.py
(or create safety_audit_extension.py
and import it).
Provide a richer policy hook (recommended): the notebook already had default_policy_hook
— replace or overload it with a function that returns the extended signature. Example:
from safety_audit_extension import example_extended_policy_hook
agent = DialecticalAgentBootstrap("node-1", retrieval_hook=find_and_evidence, policy_hook=example_extended_policy_hook)
Create auditor inside agent usage:
from safety_audit_extension import attach_auditor_to_agent, TransparencyLogWithSafety
auditor = attach_auditor_to_agent(agent, host_policy_hook=agent.policy_hook, human_review_threshold=0.25)
trans = TransparencyLog(query)
ts = TransparencyLogWithSafety(trans)
Instrument important pipeline points (the comments in the module show where). Minimal points:
After retrieval: auditor.record(SafetyAuditEntry("retrieval", "RAG", "checked", "allowed", metadata={"docs": len(docs)}))
Before response policy: policy_result = auditor.run_policy_check(draft_text, {...})
and act accordingly.
On redactions: auditor.log_redaction(...)
.
On low confidence: auditor.recommend_human_review_if_needed(trans.confidence, {...})
.
Return safety_audit
as a structured object in the agent process_query()
return value, and include transparency
(merged text) for humans.
When integrated, the agent will return:
answer
: the response (or a policy-aware refusal/ redacted version).
transparency
: a human-readable report that includes: CoT steps, detected fallacies, evidence list, and a safety audit summary.
safety_audit
: a structured list of SafetyAuditEntry
dicts that show exact policy checks, redactions, escalations, and metadata such as which rule triggered and which source IDs were suppressed or down-weighted.
This fulfills your requirement that the agent explicitly explain which oversight or safety it had to deal with in its answers and pipelines (RAG, CoT, meta-CoT, oracle calls, searches), while preserving required safety controls and human oversight.