Fwd: ITCDM-2011_OpenProblems

26 views
Skip to first unread message

Belmannu Devadas Acharya

unread,
Sep 26, 2011, 12:41:20 AM9/26/11
to esampa...@eth.net, Germina K. A, Shariefuddin Pirzada, Thomas Zaslavsky, mukti1948, Tarkeshwar Singh, Suresh Hegde, kishori narayankar, sabe...@yahoo.com, shaila_...@rediffmail.com, sri devi, Choudum S A, Samir K. Vaidya, Bhavanari Satyanarayana, R. Ballakrishnan, Arumugam S, B.S. Panda, Forum Sharma, Dr. Deepa Sinha, Deepti Jain, pratiksha tiwari, PURNIMA GUPTA, Medha Huilgol, Bit-Shun Tam, aditya...@yahoo.com, wali...@yahoo.co.in, Swaminathan, math_s...@yahoo.co.in, Mathsramesh Mathsramesh, dst-...@googlegroups.com, Harekrishna Acharya, vicep...@gmail.com, Poovazhaki Ranganathan, sumat...@yahoo.co.in, wilson baskar, ferdows hossinenjad, nese...@kam.ms.mff.cuni.cz, golu...@cs.haifa.ac.il, god...@cs.clemson.edu, odile....@lri.fr, michel.l...@free.fr, debdas mishra, pra...@maths.iitkgp.ernet.in, vi...@math.tifr.res.in, Dr. Vijay Kodiyalam, Dr. Harish Seshadri, Dr. S. Thangavelu, Basudeb Dutta, Ravi Kulkarni, ravi roogi, C.E. Veni Madhavan, nmuk...@cts.iisc.ernet.in, Charusheela Deshpande, dinabandhu pradhan, SIDDANI BHASKARA, S. B. RAO, shahul hameed, rency kuryan, jishaeli...@gmail.com, vijip...@gmail.com, A.M. Mathai, garg....@gmail.com, Bimal Roy, tamc...@yahoo.co.in, Mohammad Ismail Jinnah, Abhijit Konch, Acharyulu K V L N, Adarsh Mangal, Ajay Kumar Aggarwal, Anand G Puranik, Ananthan V, Anil Maheswari, Anupam Gumber, Arikatla Satyanarayana Reddy, Balasubramanian A, Balwant Singh Thakur, Chandra Chutia, Chillara Somashekar, Dr Anita Bagora, Dr Arvind Kumar Sharma, Dr Dharam Veer Singh Kushwah, Dr Mangal Singh Bisht, Dr Ravindra Kumar, Dr. (Mrs.), Roselin D, Dr. (Mrs.) Savita Sondhi, Dr. (Ms) Deshna Loonker, Dr. A. Somasunderam, Dr. A. Uma Maheswari, Dr. Abdul Liman, Dr. Abhay Gopal Bhatt, Dr. Ajay Kumar, Dr. Ajay, Kumar, Dr. Ajit Iqbal Singh, Dr. Ajit Iqbal Singh, Dr. Anant W, Vyawahare, Dr. Anitha N, Dr. Anokhe Lal Pathak, Dr. Anupama, Patil, Dr. Aowari Navada, Dr. Aparna Lakeshmanan S, Dr. Aparna Lakeshmanan S, Dr. Arshad Khan, Dr. B. Anantha Narayanan, Dr. B. Bagchi, Dr. B. Rajeev, Dr. B. Sury, Dr. B.V. Rajarama Bhat, Dr. Bankteshwar Tiwari, Dr. Binod, Kumar Sahoo, Dr. C. Krishnamoorthi, Dr. D. Senthilkumar, Dr. D. Surya Ramana, Dr. Deepak Shetty M, Dr. Dharmendra Kumar Yadav, Dr. Diddi Kumaraswamy, Dr. Dipendra Prasad, Dr. Dyan Prakash Tripathi, Dr. E Keshava Reddy, Dr. E.K. Narayanan, Dr. G. Girija, Dr. G. Hariharan, Dr. G. Sathiyamoorthiy, Dr. Gautam Bharali, Dr. Geetha Venkatraman, Dr. Gharge Sanjeevani, Dr. H G Nagaraja, Dr. Harina P Waghamore, Dr. I B S Passi, Dr. J.G., Biswas, Dr. Jaspal Singh Aujla, Dr. Joshi Maheshkumar Laljibhai, Dr. Jugal Kishore Verma, Dr. K Manjula, Dr. K N Raghavan, Dr. K Reji Kumar, Dr. K S Charak, Dr. K Srinivas, Dr. K Sushan, Bairy, Dr. K Thirugnana Sambandam, Dr. K V Ramana, Dr. K. Shivashankara, Dr. Kapil Hari Paranjape, Dr. Kedukodi Babushri Srinivas, Dr. Krishna Maddaly, Dr. M Narasimha Ramanuja Chari, Dr. M S Mahadeva Naika, Dr. Mahuya Datta, Dr. Maneesh, Thakur, Dr. Manisha Vitthal Kulkarni, Dr. Manjunath Krishnapur, Dr. Manoj Kumar, Dr. Manoj Kumar, Dr. Manoj, Kumar Keshari, Dr. Mary George, Dr. Mohammad Yahya Abbasi, Dr. Moharram Ali Khan, Dr. Muhammad Sayed Pukhta, Dr. Murulidhar N N, Dr. N Seenivasagan, Dr. N.S. Narasimha Sastry, Dr. Neyaz Ahmad Sheikh, Dr. Nitin Nitsure, Dr. P K, Ratnakumar, Dr. Pragat, Sharma, Dr. R, Narasimha, Dr. R R Simha, Dr. R Rangarajan, Dr. Raghavendra G Kulkarni, Dr. Rahul Roy, Dr. Rajeeva L Karandikar, Dr. Rajesh Kanna M R, Dr. Rajesh Kanna M R, Dr. Rajesh Kumar Sharma, Dr. Ram Shankar Gupta, Dr. Rama Rawat, Dr. Ramesh Sreekantan, Dr. Ramprakash Sharma, Dr. Ravinder Kumar, Dr. Ruby Salestina M, Dr. Rudra P Sarkar, Dr. S H Kulkarni, Dr. S. Balasubramanian, Dr. S. Manjunath, Dr. S. Ramasubramanian, Dr. S. Somasundaram, Dr. S.C. Bagchi, Dr. Sanchi Srivastava, Dr. Saroja R Hebbar, Dr. Satya Deo, Dr. Seema Mishra, Dr. Shakir Ali, Dr. Sharad S Sane, Dr. Shiva Shankar, Dr. Shobha Madan, Dr. Shreedhar Inamdar, Dr. Siddhartha Gadgil, Dr. Siva Athreya, Dr. Somanath Bagh, Dr. Sonu Bhaskar, Dr. Subbash J Bhatt, Dr. Sudhakar Shetty, Dr. Sunil C Mathew, Dr. Swagato K Ray, Dr. T S S R K Rao, Dr. Tarakanta Nayak, Dr. Thenmozhy R, Dr. Thenmozhy R, Dr. U B Tiwari, Dr. U.C.Gairola, Dr. Umesh, Dr. V Lokesha, Dr. V S Borkar, Dr. V. Anantha Swamy, Dr. V. Balaji, Dr. V. Maheswara Rao, Dr. V. Vilfred, Dr. Vasudeva, Dr. Vinay Arora, Dr. Vishwanath K P, Dr. Wali Mohammad Shah, Helan Kumari Saikia, Indu Bala Bapna, Joseph Kennedy A, Jothiraj R, Kuntala Patra, Lalitmohan Upadhyaya, Latha S, Loganathan S, Mahan Mahajan, Meenakshi Rana, Mohan Kumar P, Mohit Puri, Mr Hari Kishore Sharma, Mr Sandeep Bhatt, Mr. A. Raghavendra, Mr. Anuj Bishnoi, Mr. Bhookhan Lal Dewangan, Mr. C. Puttaraju, Mr. Chodadra Bhikha Lila, Mr. G. Muniraja, Mr. G. Srinivasa, Mr. G. Srinivasa, Mr. Krishnan Kumar Goyal, Mr. L Benedict Michael Raj, Mr. M. Vishu Kumar, Mr. N. Balasubramanian, Mr. P. Raghunath, Mr. R.D. Jagadeesha, Mr. Rajat Tandon, Mr. Rajat Tandon, Mr. Satya Narain Mishra, Mr. Sounak Samanta, Mr. T Kannan, Mr. Umamaheswaran A, Mr. Umamaheswaran A, Mr. Vasudeva Rao, Mr. Vinay Kumar Shukla, Mr.Hemant Kumar, Mr.Hemant Kumar, Mr.K. Shreedhar, Mrs. M.R.Nagalakshni, Ms. Nilakshi Goswami, Ms. Rajeswari S, Ms. Ranneek Khassa, Ms. Vandana Bansal, Mukund Madhav Mishra, Muralisankar S, Narayanan L N, Neha Yadav, Nichal Narayanam, Pankaj Kumar, Pijus Kanti De, Pooja Khandelwal, Poonam Kumar Sharma, Prof G Ganesan, Prof. Anant R Shastri, Prof. Dinesh Singh, Prof. Rajendra Bhatia, Prof. Sashi Mohan Srivastava, Prof. V S Sunder, Raja Sekhar Tungala, Rajaprakash S, Rajendra G Vyas, Rajendra Kumar Yadav, Rajendra R, Rajeshwari A, Rama Jain, Ramadas T R, Ramamurthy P, Ravi Shankar N, Rekha Rani, Rupam Baran, Sanjay Kumar Padaliya, Saroj Panigrahi, Satya Bagchi, Shri V Swaminathan, Siddabasappa, Singdha Saxena, Sivaraman R, Smt. B Sivasankari, Sukumar D, Syed Zakir Hussain, Talat Sultana, Uma Maheswaran, Venkataramana T N, Vinay Saxena, Vivek Kumar Jain, Vivek Kumar Jain, Yengnanarayanan V


Dear All,

I found one problem was missing from the previous list by my oversight. I am now giving below the revised list of open problems that I posed during the discussions that took place in the recently concluded Indo-Tiwanese Conference on Discrete Mathematics (ITCDM-2011), with some additional notes. 

1.  Characterize infinite graphs $G$ and $H$ such that their one-point concatenations are all isomorphic (B.D. Acharya:1975). [I have declared a prize money of Rs.5,000/- for a solution to this problem. For finite graphs and digraphs the solution was due to S.B. Rao who proved my 1972 conjecture that .]

2. Conjecture (B.D. Acharya: 1980): The "Super Prime Graph of order $n$", denoted $SP(n)$, whose vertex set is the set of consecutive integers $1, 2, \dots, n$ and the edge set is formed by joining every pair of distinct vertices $i$ and $j$ that are co-prime to each other, is graceful for every value of $n$. [This has been verified to be true for $n \le 27$.  I have announced a prize of Rs.5,000/- for a solution to this problem too.]

3. Characterize graphs $G$ in which every minimum dominating set induces a unique sub-graph up to isomorphism.

4. Characterize finite graphs $G$ that satisfy the inequality $(-1)^{|V(G)|} \psi(G,0)\psi(G,-1) \le 0$, where $\psi(G,r)$ denotes the value of the characteristic polynomial $\psi(G)$ evaluated for the real number $r$. [This is already known to be true for co-graphs.]

5. There exist co-graphs $G$ on which there are `unbalanced' signed graphs $S$ (i,e. $S$ in which every cycle contains an even number of negative edges), for which $(-1)^{|V(G)|} \psi(S,0)\psi(S,-1) > 0$. Hence, characterize signed graphs $\Sigma$ for which $(-1)^{|V(\Sigma)|} \psi(\Sigma,0)\psi(\Sigma,-1) \le 0$.

6. Characterize signed graphs each of whose spectrum contains a Golden Ratio -- I call such signed graphs "golden signed graphs". 
[Note that, by a theorem of B.D. Acharya (JGT, 1980), since every balanced signed graph on a given graph $G$ is cospectral with its underlying graph $G$, if $G$ is golden then all the balanced signed graphs on $G$ are golden. Similarly, signed graphs that are switching equivalent necessarily have the same eigenvalues by a theorem of T. Zaslavsky (DM, 1980). Therefore, only unbalanced signed graphs are of interest qua signed graphs.  For example, it is interesting that an unbalanced C_5 is golden.  In fact, it is surprising that both balanced and unbalanced signatures of C_5 are golden.  This is surely a rare property.  We (TZ and I) guess that there are only a few graphs $G$ (not counting trees as they are necessarily balanced) such that every signing of G is golden.]

7. A signed graph $\Sigma$ is perfectly golden if each of its eigenvalues is a golden ratio. Characterize perfectly golden signed graphs.

8. Two golden signed graphs are co-golden if they share the same multiset of golden ratios in their spectra. Conjecture: The proportion of the number of co-golden signed graphs of order $n$ to the number of cospectral signed graphs of order $n$ tends to zero as $n$ tends to infinity.   

9. Conjecture (B.D. Acharya: 1985): There are only a finite number of signed graphs each of whose spectrum consists of only integers. 

10. The degree $e(u)$ of a vertex $u$ in a signed graph $\Sigma$ of a finite order $p$ is defined as the number of positive edges incident to $u$ (called the positive degree of $u$ and denoted $e^+(u)$) minus the number of negative edges incident to $u$ (called the negative degree of $u$ and denoted $e^-(u)$). The degree sequence of $\Sigma$ is then a sequence of integers $e=(e_1, e_2, \dots, e_p)$, written in a non-decreasing order such that each of the numbers $e_i$ is the degree of some vertex of $\Sigma$. Let $\mathcal{S}_p(e)$ denote the set of all signed graphs of order $p$ having the same degree sequence $e$. Clearly, there are only a finite number of signed graphs with the same degree sequence, that is $|\mathcal{S}_p(e)| < \infty$. Let $\mathcal{D}_p$ denote the set of all degree sequences of signed graphs of order $p$. Construct a $p$-dimensional polytope $\mathcal{P}$ with $\mathcal{D}_p$ as its vertex set and $ee'$ forming a straight line segment joining $e$ and $e'$ ('edge') whenever there exists a signed graph $\Sigma_1 \in \mathcal{S}_p(e)$ and a signed graph $\Sigma_2 \in \mathcal{S}_p(e')$ such that $|E^+(\Sigma_1)| = |E^+(\Sigma_2)|$ and $|E^-(\Sigma_1)| = |E^-(\Sigma_2)|$, that is, they have the same number of positive and negative edges. Investigate the properties of $\mathcal{P}$. In particular, under what conditions it is convex?    

With best regards, I remain
yours sincerely,
B.D. ACHARYA



Reply all
Reply to author
Forward
0 new messages