The pipe-dream of high light output via lux pathway seems to be just that. As another DIYBiologist said, the metabolic rate required for sustained illumination would kill the plant...unless there is something we are overlooking of course.
--
-- You received this message because you are subscribed to the Google Groups DIYbio group. To post to this group, send email to diy...@googlegroups.com. To unsubscribe from this group, send email to diybio+un...@googlegroups.com. For more options, visit this group at https://groups.google.com/d/forum/diybio?hl=en
Learn more at www.diybio.org
---
You received this message because you are subscribed to the Google Groups "DIYbio" group.
To post to this group, send email to diy...@googlegroups.com.
To unsubscribe from this group, send email to diybio+un...@googlegroups.com.
Visit this group at http://groups.google.com/group/diybio?hl=en.
To view this discussion on the web visit https://groups.google.com/d/msg/diybio/-/AVA85TciocEJ.
For more options, visit https://groups.google.com/groups/opt_out.
--
-- You received this message because you are subscribed to the Google Groups DIYbio group. To post to this group, send email to diy...@googlegroups.com. To unsubscribe from this group, send email to diybio+un...@googlegroups.com. For more options, visit this group at https://groups.google.com/d/forum/diybio?hl=en
Learn more at www.diybio.org
---
You received this message because you are subscribed to the Google Groups "DIYbio" group.
To post to this group, send email to diy...@googlegroups.com.
To unsubscribe from this group, send email to diybio+un...@googlegroups.com.
Visit this group at http://groups.google.com/group/diybio?hl=en.
To view this discussion on the web visit https://groups.google.com/d/msg/diybio/-/MEXHWbIdUJoJ.
How well described is the bioluminecensce in dinos? Could it be transformed into plants?
--
-- You received this message because you are subscribed to the Google Groups DIYbio group. To post to this group, send email to diy...@googlegroups.com. To unsubscribe from this group, send email to diybio+un...@googlegroups.com. For more options, visit this group at https://groups.google.com/d/forum/diybio?hl=en
Learn more at www.diybio.org
---
You received this message because you are subscribed to the Google Groups "DIYbio" group.
To post to this group, send email to diy...@googlegroups.com.
To unsubscribe from this group, send email to diybio+un...@googlegroups.com.
Visit this group at http://groups.google.com/group/diybio?hl=en.
To view this discussion on the web visit https://groups.google.com/d/msg/diybio/-/RrQkNqp7amUJ.
But actually, a great idea!
--
-- You received this message because you are subscribed to the Google Groups DIYbio group. To post to this group, send email to diy...@googlegroups.com. To unsubscribe from this group, send email to diybio+un...@googlegroups.com. For more options, visit this group at https://groups.google.com/d/forum/diybio?hl=en
Learn more at www.diybio.org
---
You received this message because you are subscribed to the Google Groups "DIYbio" group.
To post to this group, send email to diy...@googlegroups.com.
To unsubscribe from this group, send email to diybio+un...@googlegroups.com.
Visit this group at http://groups.google.com/group/diybio?hl=en.
"The complete primary sequence of the 238 amino acids of Aequorea green fluorescent protein (accession P42212) was not revealed until the cloning and sequencing of its cDNA by Prasher in 1992 (Prasher et al. 1992). Just two years later came the first dramatic demonstrations that the gene was self-sufficient to undergo the post-translational modifications necessary for chromophore formation. Specifically, Chalfie reported the gene encoding Aequorea green fluorescent protein could be functionally expressed in the sensory neurons of the worm Caenorhabditis elegans (Chalfie et al. 1994) and Inouye and Tsuji showed that expression of the gene in Escherichia coli resulted in green fluorescent bacteria (Inouye and Tsuji 1994)." (link)
and...
"changes in membrane permeability of the cells in the pulvini occur that allow for the rapid movement of calcium ions. This has been related to increased cell wall pliability in the pulvini, which when coupled with decreased turgor pressure allows for movement." (link2)
The main trigger for the reaction being the addition of Ca2+ as a promoter. Sensitive plant also uses Calcium ions as their trigger, so if you could make it activate the fluorescent protein instead of (or both?!?)a kinetic movement the plant would "light-up" when touched/agitated.--
-- You received this message because you are subscribed to the Google Groups DIYbio group. To post to this group, send email to diy...@googlegroups.com. To unsubscribe from this group, send email to diybio+un...@googlegroups.com. For more options, visit this group at https://groups.google.com/d/forum/diybio?hl=en
Learn more at www.diybio.org
---
You received this message because you are subscribed to the Google Groups "DIYbio" group.
To post to this group, send email to diy...@googlegroups.com.
To unsubscribe from this group, send email to diybio+un...@googlegroups.com.
Visit this group at http://groups.google.com/group/diybio?hl=en.
To view this discussion on the web visit https://groups.google.com/d/msg/diybio/-/bSmz47R5RJgJ.
Depending on how complex the pathway is, a pull-down assay using chlorophyll might work (I'm assuming you know for sure that chlorophyll is indeed a precursor to luciferin) - it might at least give you the first enzymatic step.
You could probably save yourselves considerable amounts of time by doing some bioinformatics homework first, looking for proteins in other algae/plant species that bind chlorophyll, then go back to the encoding sequences (or make a qualified guess at the mRNA sequences) to create PCR primers and use those to look for analogs?
Seeing as my imagination is now solidly captured by the topic, do you happen to have any good papers on luciferin in dinos? Also, which species are you working with? A quick-n-dirty Google scholar search revealed that molecular markers have been developed for at least some species, and may come in handy.
--
-- You received this message because you are subscribed to the Google Groups DIYbio group. To post to this group, send email to diy...@googlegroups.com. To unsubscribe from this group, send email to diybio+un...@googlegroups.com. For more options, visit this group at https://groups.google.com/d/forum/diybio?hl=en
Learn more at www.diybio.org
---
You received this message because you are subscribed to the Google Groups "DIYbio" group.
To post to this group, send email to diy...@googlegroups.com.
To unsubscribe from this group, send email to diybio+un...@googlegroups.com.
Visit this group at http://groups.google.com/group/diybio?hl=en.
To view this discussion on the web visit https://groups.google.com/d/msg/diybio/-/Zrsxc0QyQaIJ.
I don't think P. lunula genetics would make for a great international DIYbio project. It's at least an order of magnitude harder than, say, characterizing genes in Arabidopsis, where the whole genome is known and there's all sort of genetic tools already available.
--
-- You received this message because you are subscribed to the Google Groups DIYbio group. To post to this group, send email to diy...@googlegroups.com. To unsubscribe from this group, send email to diybio+un...@googlegroups.com. For more options, visit this group at https://groups.google.com/d/forum/diybio?hl=en
Learn more at www.diybio.org
---
You received this message because you are subscribed to the Google Groups "DIYbio" group.
To post to this group, send email to diy...@googlegroups.com.
To unsubscribe from this group, send email to diybio+un...@googlegroups.com.
Visit this group at http://groups.google.com/group/diybio?hl=en.
--
-- You received this message because you are subscribed to the Google Groups DIYbio group. To post to this group, send email to diy...@googlegroups.com. To unsubscribe from this group, send email to diybio+un...@googlegroups.com. For more options, visit this group at https://groups.google.com/d/forum/diybio?hl=en
Learn more at www.diybio.org
---
You received this message because you are subscribed to the Google Groups "DIYbio" group.
To post to this group, send email to diy...@googlegroups.com.
To unsubscribe from this group, send email to diybio+un...@googlegroups.com.
Visit this group at http://groups.google.com/group/diybio?hl=en.
To view this discussion on the web visit https://groups.google.com/d/msg/diybio/-/bSmz47R5RJgJ.
I wonder if you could take dinoflagellate chromosomes and put it into plant nucleus?
That would give you polyploid plants that glow when touched??
On Saturday, October 20, 2012 7:20:15 PM UTC+2, Sebastian wrote:
--
-- You received this message because you are subscribed to the Google Groups DIYbio group. To post to this group, send email to diy...@googlegroups.com. To unsubscribe from this group, send email to diybio+un...@googlegroups.com. For more options, visit this group at https://groups.google.com/d/forum/diybio?hl=en
Learn more at www.diybio.org
---
You received this message because you are subscribed to the Google Groups "DIYbio" group.
To post to this group, send email to diy...@googlegroups.com.
To unsubscribe from this group, send email to diybio+un...@googlegroups.com.
Visit this group at http://groups.google.com/group/diybio?hl=en.
To view this discussion on the web visit https://groups.google.com/d/msg/diybio/-/ydfdoGUx5TYJ.
The mechanism for touch has not yet been fully isolated and introduced into another organism. I believe dinos act like other marine bioglowers and have a quorum sensing based glow response so touch would not work since it is not there.