template<int dim>FullMatrix<double> get_b_operator (const FEValues<dim> &fe_values, const unsigned int dofs_per_cell, const unsigned int q){ FullMatrix<double> tmp(dim, GeometryInfo<dim>::vertices_per_cell);
std::vector<DerivativeForm<1, dim, dim> > invJ = fe_values.get_inverse_jacobians();
for (unsigned int i = 0; i < dofs_per_cell; i = i + dim) { const unsigned int index = i / dim;
// COMPUTE: B-operator (Remark: This version has to be extended for 3D!) tmp[0][index] = invJ[q][0][0] * fe_values.shape_grad(i, q)[0] + invJ[q][0][1] * fe_values.shape_grad(i, q)[1]; tmp[1][index] = invJ[q][1][0] * fe_values.shape_grad(i, q)[0] + invJ[q][1][1] * fe_values.shape_grad(i, q)[1]; }
return tmp;}
SHAPE FUNCTION DERIVATIVES (GAUSS POINT 1)
-0.788675 -0.788675 0.788675 -0.211325 0.211325 0.211325 -0.211325 0.788675
SHAPE FUNCTION DERIVATIVES (GAUSS POINT 2)
-0.788675 -0.211325 0.788675 -0.788675 0.211325 0.788675 -0.211325 0.211325
SHAPE FUNCTION DERIVATIVES (GAUSS POINT 3)
-0.211325 -0.788675 0.211325 -0.211325 0.788675 0.211325 -0.788675 0.788675
SHAPE FUNCTION DERIVATIVES (GAUSS POINT 4)-0.211325 -0.211325 0.211325 -0.788675 0.788675 0.788675 -0.788675 0.211325
SHAPE FUNCTION DERIVATIVES
-0.788675 -0.788675 -0.788675 -0.788675 0.788675 -0.211325 0.788675 -0.211325 -0.211325 0.788675 -0.211325 0.788675 0.211325 0.211325 0.211325 0.211325 -0.788675 -0.211325 -0.788675 -0.211325 0.788675 -0.788675 0.788675 -0.788675 -0.211325 0.211325 -0.211325 0.211325 0.211325 0.788675 0.211325 0.788675 -0.211325 -0.788675 -0.211325 -0.788675 0.211325 -0.211325 0.211325 -0.211325 -0.788675 0.788675 -0.788675 0.788675 0.788675 0.211325 0.788675 0.211325 -0.211325 -0.211325 -0.211325 -0.211325 0.211325 -0.788675 0.211325 -0.788675 -0.788675 0.211325 -0.788675 0.211325 0.788675 0.788675 0.788675 0.788675
SHAPE FUNCTION DERIVATIVES
-1.577350 -1.577350 -1.577350 -1.577350 1.577350 -0.422650 1.577350 -0.422650 -0.422650 1.577350 -0.422650 1.577350 0.422650 0.422650 0.422650 0.422650 -1.577350 -0.422650 -1.577350 -0.422650 1.577350 -1.577350 1.577350 -1.577350 -0.422650 0.422650 -0.422650 0.422650 0.422650 1.577350 0.422650 1.577350 -0.422650 -1.577350 -0.422650 -1.577350 0.422650 -0.422650 0.422650 -0.422650 -1.577350 1.577350 -1.577350 1.577350 1.577350 0.422650 1.577350 0.422650 -0.422650 -0.422650 -0.422650 -0.422650 0.422650 -1.577350 0.422650 -1.577350 -1.577350 0.422650 -1.577350 0.422650 1.577350 1.577350 1.577350 1.577350
SYMMETRIC GRADIENT (GAUSS POINT 1)
0.000000 0.211325 0.211325 0.422650
SYMMETRIC GRADIENT (GAUSS POINT 2)
0.000000 0.211325 0.211325 1.577350
SYMMETRIC GRADIENT (GAUSS POINT 3)
0.000000 0.788675 0.788675 0.422650
SYMMETRIC GRADIENT (GAUSS POINT 4)
0.000000 0.788675 0.788675 1.577350