I try to solve the following problem.
The optimization variable is $x$, $\delta$ is an auxiliary variable, the parameters $A$ and $B$ do not have a definite sign and $\Omega$ is definite positive.

Here is the code that I tried for a minimal instance of the problem ($i\in \{0\}$ and $a \in \{0,1\}$).
The code show that the problem is feasible but cvxpy say that it is 'infeasible_innacurate".
import cvxpy as cp
import numpy as np
from scipy.linalg import block_diag
def test_problem():
# Define the problem
na = 2
ni = 1
A = np.array([[1757.4000007, 8786.99999824]])
B = np.array([[-4292.5, 12675.49999661]])
# Prepare the quadratic form
# array N x N
omega = np.array([[1.0]])
# array AN x AN
omega = block_diag(omega, omega)
# variable of size AN
xx = cp.Variable(na * ni)
delta = cp.mul_elemwise(A.flatten(), xx) + B.flatten()
cost = cp.quad_form(delta, omega)
obj = cp.Minimize(cost)
assert obj.is_dcp()
# Constraints
# cnstr_pos = [xx >= -1.44]
cnstr_pos = [xx >= 0]
cnstr_sum = [cp.sum_entries(cp.mul_elemwise(proj, xx)) == 1. for proj in [[1, 1]]]
cnstr = cnstr_pos + cnstr_sum
prob = cp.Problem(obj, cnstr)
assert prob.is_dcp()
# prob = cp.Problem(obj)
# Verify that problem is actually feasible
xx.value = np.array([[1.], [0]])
optimal_value = obj.value
assert optimal_value == 167095032.17051098
assert [d.value for d in delta] == [-2535.0999993, 12675.49999661]
assert [_cstr.value for _cstr in cnstr] == [True, True]
# Solve the problem
res = prob.solve(verbose=True)
assert not np.isfinite(res)
assert prob.status == 'infeasible_inaccurate'
Can somebody help me to understand why it fails. Is it a problem in my formulation or an instability of cvxpy?
Thanks in advance.