What are the possible reasons for the producted unreasonable structure of silicate melt using cp2k ab initio MD?

69 views
Skip to first unread message

Sun Yiwei

unread,
Sep 7, 2021, 3:56:56 AM9/7/21
to cp2k
Hello everyone, I use cp2k to run an ab initio calculation of the silicate melt structure. I tried many possible situations, but the structure that came out was unreasonable. I don't know where the problem occurred. Please help me to see the possible reasons. The inp file is as follows.

The system contains 32 Ca, 50 Si, 138 O, 4 B, a total of 224 atoms, and the atoms are randomly distributed in the initial structure. Theoretically speaking, there should be 4 O atoms coordinated around Si atoms in the equilibrium structure, but in the structure I ran out, only part of the Si atoms are surrounded by 4 O atoms, and the other part of the Si atoms has only three O atoms, two O atoms, or one O atom coordinated, and even a few Si atoms are free. In addition, in the structure I ran out, the Si inside the system was basically 4-coordinated, and the coordination numbers of Si and O atoms at the system boundary did not reach saturation, as shown in the figure I simulated below. In theory, O atoms should be combined with Si atoms, but the O atoms at the edges of the system are basically free. I was wondering if there are some unreasonable parameter settings in inp file that caused this situation. The equilibrium structure I ran out is as follows.

I have been stuck here for a long time, so please help. Thank you all for your help!

1555.png

@SET SYSNAME CaSiOB
@SET CELL 14.7599

&GLOBAL
    PRINT_LEVEL MEDIUM
    PROJECT_NAME ${SYSNAME}
    RUN_TYPE MD
&END GLOBAL

&FORCE_EVAL
    METHOD  QS
    STRESS_TENSOR  ANALYTICAL
    &DFT
        BASIS_SET_FILE_NAME BASIS_MOLOPT
        POTENTIAL_FILE_NAME GTH_POTENTIALS
        &SCF
            MAX_SCF    200
            EPS_SCF    1.0e-5
            SCF_GUESS  ATOMIC
            &PRINT
                &RESTART OFF
                &END RESTART
            &END PRINT
            &OT ON
                PRECONDITIONER  FULL_SINGLE_INVERSE
                MINIMIZER       DIIS
            &END OT
            &OUTER_SCF
                EPS_SCF    1.0e-5
                MAX_SCF  100
            &END OUTER_SCF
        &END SCF
        &QS
            EPS_DEFAULT     1e-10
        &END QS
        &MGRID
            NGRIDS 4
            CUTOFF 800        
            REL_CUTOFF 60     
        &END MGRID
        &XC
            &XC_FUNCTIONAL PBE
            &END XC_FUNCTIONAL
            DENSITY_CUTOFF      1e-10  
            GRADIENT_CUTOFF     1e-10  
            TAU_CUTOFF          1e-10  
            &VDW_POTENTIAL
                POTENTIAL_TYPE  PAIR_POTENTIAL
                &PAIR_POTENTIAL
                    R_CUTOFF    18     
                    TYPE        DFTD3
                    PARAMETER_FILE_NAME dftd3.dat
                    REFERENCE_FUNCTIONAL PBE
                &END PAIR_POTENTIAL
            &END VDW_POTENTIAL
        &END XC
    &END DFT
    &SUBSYS
        &TOPOLOGY
            COORD_FILE ${SYSNAME}.xyz
            COORD_FILE_FORMAT XYZ
            CONN_FILE_FORMAT OFF
        &END TOPOLOGY
        &CELL
            ABC ${CELL} ${CELL} ${CELL}
            ALPHA_BETA_GAMMA 90.0 90.0 90.0
            MULTIPLE_UNIT_CELL  1 1 1
            PERIODIC XYZ
        &END CELL
        &KIND B
            BASIS_SET DZVP-MOLOPT-SR-GTH
            POTENTIAL GTH-PBE-q3
        &END KIND
        &KIND O
            BASIS_SET DZVP-MOLOPT-SR-GTH
            POTENTIAL GTH-PBE-q6
        &END KIND
        &KIND Si
            BASIS_SET DZVP-MOLOPT-SR-GTH
            POTENTIAL GTH-PBE-q4
        &END KIND
        &KIND Ca
            BASIS_SET DZVP-MOLOPT-SR-GTH
            POTENTIAL GTH-PBE-q10
        &END KIND
    &END SUBSYS
&END FORCE_EVAL

&MOTION
    &MD
        ENSEMBLE NVT
        &THERMOSTAT
            REGION MASSIVE
            TYPE NOSE
            &NOSE
                TIMECON 100
            &END NOSE
        &END THERMOSTAT
        STEPS 10000
        TEMPERATURE 1823
        TIMESTEP 2.0
    &END MD
    &PRINT
        &RESTART
            FILENAME =${SYSNAME}.rst
            &EACH
                MD 10
            &END EACH
        &END RESTART
        &STRESS
            FILENAME =${SYSNAME}.stress
            &EACH
                MD 10
            &END EACH
        &END STRESS
        &TRAJECTORY
            FILENAME =${SYSNAME}.pos.xyz
            FORMAT XYZ
            UNIT angstrom
            &EACH
                MD 10
            &END EACH
        &END TRAJECTORY
        &VELOCITIES
            FILENAME =${SYSNAME}.vel.xyz
            FORMAT XYZ
            UNIT angstrom/fs
            &EACH
                MD 10
            &END EACH
        &END VELOCITIES
        &FORCES
            FILENAME =${SYSNAME}.frc.xyz
            FORMAT XYZ
            UNIT amu*angstrom/fs^2
            &EACH
                MD 10
            &END EACH
        &END FORCES
        &CELL
            FILENAME =${SYSNAME}.cell
            &EACH
                MD 10
            &END EACH
        &END CELL
    &END PRINT
&END MOTION




Thomas Kühne

unread,
Sep 7, 2021, 5:10:33 PM9/7/21
to cp...@googlegroups.com
Dear Sun Yiwei, 

in my opinion your temperature is too low, possibly even below the experimental melting temperature. Here, you have to be aware 
that the temperature scale is rather fine and DFT easily mispredicts the transition temperature by ~200 K. Moreover, close to the 
transition line the time-scales for melting/crystallization become unreasonably high for direct MD simulations. Hence, I conjecture 
that what you obtained may not a genuine melt and the eventual structure strongly dependent on your chosen random initial 
structure. Also, be aware that for pure silica, the particle density of the liquid is approx. 20% below that of its crystalline phase. 
Instead, I would suggest to equilibrate the melt at a much higher temperature and possibly then quench it to the desired target 
temperature well above the experimental transition temperature …

Best, 
Thomas Kühne

Am 07.09.2021 um 09:56 schrieb Sun Yiwei <sun789...@gmail.com>:

Hello everyone, I use cp2k to run an ab initio calculation of the silicate melt structure. I tried many possible situations, but the structure that came out was unreasonable. I don't know where the problem occurred. Please help me to see the possible reasons. The inp file is as follows.

The system contains 32 Ca, 50 Si, 138 O, 4 B, a total of 224 atoms, and the atoms are randomly distributed in the initial structure. Theoretically speaking, there should be 4 O atoms coordinated around Si atoms in the equilibrium structure, but in the structure I ran out, only part of the Si atoms are surrounded by 4 O atoms, and the other part of the Si atoms has only three O atoms, two O atoms, or one O atom coordinated, and even a few Si atoms are free. In addition, in the structure I ran out, the Si inside the system was basically 4-coordinated, and the coordination numbers of Si and O atoms at the system boundary did not reach saturation, as shown in the figure I simulated below. In theory, O atoms should be combined with Si atoms, but the O atoms at the edges of the system are basically free. I was wondering if there are some unreasonable parameter settings in inp file that caused this situation. The equilibrium structure I ran out is as follows.

I have been stuck here for a long time, so please help. Thank you all for your help!

--
You received this message because you are subscribed to the Google Groups "cp2k" group.
To unsubscribe from this group and stop receiving emails from it, send an email to cp2k+uns...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/cp2k/dad379b2-a39a-413c-96c0-507d82db1b71n%40googlegroups.com.
<1555.png>

Reply all
Reply to author
Forward
0 new messages