Google Groups no longer supports new Usenet posts or subscriptions. Historical content remains viewable.

Dismiss

31 views

Skip to first unread message

Feb 12, 1993, 6:47:55 PM2/12/93

to

In article <1993Feb8.1...@bert.eecs.uic.edu> Steven L. Eddins,

edd...@bert.eecs.uic.edu writes:

>Does anyone have an m-file to compute the DCT? Yes, I know there are

>several definitions; any would be acceptable.

edd...@bert.eecs.uic.edu writes:

>Does anyone have an m-file to compute the DCT? Yes, I know there are

>several definitions; any would be acceptable.

Here are files for dct and idct that we have at The MathWorks. Enjoy!

By the way, these functions work with MATLAB 4.0 (Hint: size(a,1) is

not compatible with MATLAB 3.5).

- Clay (cl...@mathworks.com)

---------------------------------

function b=dct(a,n)

%DCT Discrete cosine transform.

%

% Y = DCT(X) returns the discrete cosine transform of X.

% The vector Y is the same size as X and contains the

% discrete cosine transform coefficients.

%

% Y = DCT(X,N) pads the vector X to length N before

% transforming.

%

% If X is a matrix, the DCT operation is applied to each

% column. This transform can be inverted using IDCT.

%

% See also: FFT,IFFT, and IDCT.

% Clay M. Thompson 2-12-93

% Copyright (c) 1993 by The MathWorks, Inc.

if nargin==1,

if min(size(a))==1, a = a(:); end

n = size(a,1);

end

m = size(a,2);

% Pad a if necessary

if size(a,1)<n,

aa = zeros(n,m);

aa(1:size(a,1),:) = a;

else

aa = a;

end

% Form intermediate even-symmetric matrix.

y = zeros(2*n,m);

y(1:n,:) = aa;

y(n+1:n+n,:) = flipud(aa);

% Perform FFT

yy = fft(y);

% Compute DCT coefficients

W = exp(((0:n-1)'* (ones(1,m)*(-sqrt(-1)*pi/2/n))));

b = W.*yy(1:n,:);

if ~any(any(imag(a))), b = real(b); end

----------------------

function a = idct(b,m,n)

%IDCT Inverse discrete cosine transform.

%

% X = IDCT(Y) inverts the DCT transform, returning the

% original vector if Y was obtained using Y = DCT(X).

%

% X = IDCT(Y,N) pads the vector Y to length N before

% transforming.

%

% If Y is a matrix, the IDCT operation is applied to

% each column.

%

% See also: FFT,IFFT,DCT.

% Clay M. Thompson 2-12-93

% Copyright (c) 1993 by The MathWorks, Inc.

if nargin==1,

if min(size(b))==1, b = b(:); end

n = size(b,1);

end

m = size(b,2);

% Pad b if necessary

if size(b,1)<n,

bb = zeros(n,m);

bb(1:size(b,1),:) = b;

else

bb = b;;

end

% Form intermediate even-symmetric matrix.

W = exp(([0:n-1]'* (ones(1,m)*(sqrt(-1)*pi/2/n))));

yy = zeros(2*n,m);

yy(1:n,:) = W.*bb;

yy(n+2:n+n,:) = -sqrt(-1)*W(2:n,:).*flipud(bb(2:n,:));

y = ifft(yy);

% Extract inverse DCT

a = y(1:n,:);

if ~any(any(imag(b))), a = real(a); end

Feb 12, 1993, 9:39:07 PM2/12/93

to

I extracted this code from a larger file

it includes the dct fuction which I am hoping to mex it

one of these days

%load boat128 ; im = boat128 ; clear boat16 ;

%end

cl = 2 ;

class = 2 .^ cl

%read the image

[imsizex ,imsizey] = size(im) ;

imim = zeros(imsizex ,imsizey) ;

N = 8 ;

NN = N*N ;

vectnum = imsizex * imsizey / NN ;

dctim = zeros(vectnum,NN) ;

dctf = zeros(N,N) ;

fkrnl = dctkernel(N) ;

t0 = clock ;

k = 1 ;

for i=1:N:imsizex,

for j=1:N:imsizey,

dctim(k,:) = rect2zigzag(fkrnl* (im(i:(i+N-1),j:(j+N-1))-128) *fkrnl') ;

k = k+1 ;

end

end

% DCT KERNEL

function [krnl] = dctkernel (NN)

% Calculating DCT constant of 1-D.

AU = ones(1,NN) /NN ;

AU (1) = AU(1)/sqrt(2.);

AU = 2 * AU ;

NN2 = 1 / (2 * NN);

% Calculating DCT kernel of 1-D.

u = 0:NN-1 ;

x = u ;

upi = (u * pi) * NN2 ;

cs = cos (upi' * (2*x+1) ) ;

krnl = (AU' * ones(1,NN)) .* cs;

Saad Bedros

Elect Eng Dept

U of Minnesota

0 new messages

Search

Clear search

Close search

Google apps

Main menu