282 views

Skip to first unread message

Jan 29, 2013, 2:42:30 AM1/29/13

to

Bellow is presented an eigenvalue resultant of a jacobian matrix... where appears (..)#1 and (..)#1^2,& what it means?

Root[C0 CG^2 vG^2 vL \+(2 C0 CL^2 vG vL \[Alpha]^2 \[Rho]L^2+C0 CL^2 vL^2 \[Alpha]^2 \[Rho]L^2) #1+([Alpha] \[Rho]L^2-C0 CL^2 vG \[Alpha]^2 \[Rho]L^2-2 C0 CL^2 vL \[Alpha]^2 \[Rho]L^2) #1^2&,1]

best regards

Root[C0 CG^2 vG^2 vL \+(2 C0 CL^2 vG vL \[Alpha]^2 \[Rho]L^2+C0 CL^2 vL^2 \[Alpha]^2 \[Rho]L^2) #1+([Alpha] \[Rho]L^2-C0 CL^2 vG \[Alpha]^2 \[Rho]L^2-2 C0 CL^2 vL \[Alpha]^2 \[Rho]L^2) #1^2&,1]

best regards

Jan 30, 2013, 10:05:23 PM1/30/13

to

For example, you could write a function lixe this:

f[x]:= x^2

or you could write it as a pure function:

f=#^2&

Either way, f[3] would give you an answer of 9, and f[x+y] would return (x+y)^2.

Reply all

Reply to author

Forward

0 new messages

Search

Clear search

Close search

Google apps

Main menu