mat = {
{0, 1, 0, 0, 0, 0, 0, 0, 0, 0},
{-(1 + K + K1), -0.1, K, 0, 0, 0, 0, 0, K1, 0},
{0, 0, 0, 1, 0, 0, 0, 0, 0, 0},
{K, 0, -(1 + 2 K + K1), -0.1, K, 0, 0, 0, K1, 0},
{0, 0, 0, 0, 0, 1, 0, 0, 0, 0},
{0, 0, K, 0, -(1 + 2 K + K1), -0.1, K, 0, K1, 0},
{0, 0, 0, 0, 0, 0, 0, 1, 0, 0},
{0, 0, 0, 0, K, 0, -(1 + K + K1), -0.1, K1, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1},
{K1, 0, K1, 0, K1, 0, K1, 0, -(1 + 4 K1), -0.1}};
Rationalize the matrix first and you will get radicals rather than Root objects.
ev1 = Eigenvalues[Rationalize[mat]] // Simplify
{(1/20)*I*(I + Sqrt[399]), (-(1/20))*I*(-I + Sqrt[399]),
(1/20)*(-1 - Sqrt[-399 - 2000*K1]),
(1/20)*(-1 + Sqrt[-399 - 2000*K1]),
(1/20)*(-1 - Sqrt[-399 - 800*K - 400*K1]),
(1/20)*(-1 + Sqrt[-399 - 800*K - 400*K1]),
(1/20)*(-1 - Sqrt[-399 - 400*(2 + Sqrt[2])*K - 400*K1]),
(1/20)*(-1 + Sqrt[-399 - 400*(2 + Sqrt[2])*K - 400*K1]),
(1/20)*(-1 - Sqrt[-399 + 400*(-2 + Sqrt[2])*K - 400*K1]),
(1/20)*(-1 + Sqrt[-399 + 400*(-2 + Sqrt[2])*K - 400*K1])}
Alternatively,
ev2 = Eigenvalues[mat] // Rationalize // ToRadicals // Simplify
{(1/20)*(-1 - Sqrt[-399 + 400*(-2 + Sqrt[2])*K - 400*K1]),
(1/20)*(-1 + Sqrt[-399 + 400*(-2 + Sqrt[2])*K - 400*K1]),
(1/20)*(-1 - Sqrt[-399 - 400*(2 + Sqrt[2])*K - 400*K1]),
(1/20)*(-1 + Sqrt[-399 - 400*(2 + Sqrt[2])*K - 400*K1]),
(1/20)*(-1 - Sqrt[-399 - 2000*K1]),
(1/20)*(-1 + Sqrt[-399 - 2000*K1]),
(1/20)*(-1 - Sqrt[-399 - 800*K - 400*K1]),
(1/20)*(-1 + Sqrt[-399 - 800*K - 400*K1]),
(-(1/20))*I*(-I + Sqrt[399]), (1/20)*I*(I + Sqrt[399])}
Sort[ev1] === Sort[ev2]
True
To learn about Root objects see
http://reference.wolfram.com/mathematica/ref/Root.html
Bob Hanlon