A=1*10^(-4);
k=2/3;
g=1.12*10^(-11);
Attenuation= 0.23026*0.475*10^(-3);
L=7200;
Leff=(1-exp[-Attenuation*L])/Attenuation;
FindRoot[x-A*exp[k*g*x*Leff-Attenuation*L],{x,0}]
It executes the below solution,
FindRoot::nlnum: The function value {0.-0.0001 exp[-0.787489+0. \
(1.+Times[<<2>>])]} is not a list of numbers with dimensions {1} at \
{x} = {0.}.
I need your help about numerical and Alpha_numeric solution of this problem.
f(x)= x-A*exp[k*g*x*Leff-Attenuation*L
Serdar
All Mathematica functions start with an uppercase letter, so exp[...]
should be Exp[...]
Bhuvanesh,
Wolfram Research
A = 1*10^(-4);
k = 2/3;
g = 1.12*10^(-11);
Attenuation = 0.23026*0.475*10^(-3);
L = 7200;
Leff = (1 - Exp[-Attenuation*L])/Attenuation;
FindRoot[x - A*Exp[k*g*x*Leff - Attenuation*L], {x, 0}]
{x->0.0000454986}
Bob Hanlon
> When run the below code,
>
> A=1*10^(-4);
>
> k=2/3;
>
> g=1.12*10^(-11);
>
> Attenuation= 0.23026*0.475*10^(-3);
>
> L=7200;
>
> Leff=(1-exp[-Attenuation*L])/Attenuation;
==========^^^
Must be Exp
> FindRoot[x-A*exp[k*g*x*Leff-Attenuation*L],{x,0}]
===============^^^
Must be Exp
> It executes the below solution,
>
> FindRoot::nlnum: The function value {0.-0.0001 exp[-0.787489+0. \
>
> (1.+Times[<<2>>])]} is not a list of numbers with dimensions {1} at \
>
> {x} = {0.}.
>
> I need your help about numerical and Alpha_numeric solution of this problem.
>
> f(x)= x-A*exp[k*g*x*Leff-Attenuation*L
============^^^
Must be Exp
Hi Serdar,
You just made a typo when writing the exponential function. Keep in mind
that every function names starts with a capital letter, i.e. *Exp* and
not exp.
In[1]:= A = 1*10^(-4);
k = 2/3;
g = 1.12*10^(-11);
Attenuation = 0.23026*0.475*10^(-3);
L = 7200;
Leff = (1 - Exp[-Attenuation*L])/Attenuation;
FindRoot[x - A*Exp[k*g*x*Leff - Attenuation*L], {x, 0}]
Out[7]= {x -> 0.0000454986}
Regards,
-- Jean-Marc
replace exp by Exp..and everything will work fine
Please remember..in Mathematica..all functions
starts
with capital letters
In[36]:= A = 1*10^(-4);
k = 2/3;
g = 1.12*10^(-11);
Attenuation = 0.23026*0.475*10^(-3);
L = 7200;
Leff = (1 - Exp[-Attenuation*L])/Attenuation;
FindRoot[x - A*Exp[k*g*x*Leff - Attenuation*L], {x,
0}]
Out[42]= {x -> 0.0000454986}
____________________________________________________________________________________
Be a better friend, newshound, and
know-it-all with Yahoo! Mobile. Try it now. http://mobile.yahoo.com/;_ylt=Ahu06i62sR8HDtDypao8Wcj9tAcJ