In Maple, I am integrating a function involving the "erfc" function,
the final integral result has no explicit form, but should be able to
representted as a "\Phi(.)" function, where the "\Phi(.)" is the Gaussian
distribution function (cumulative).
Is there a way to force the following integral to output in the form of
"\Phi(.)" in Maple?
Thanks
int(exp(a*m)*(sqrt(T)*sqrt(Pi)*erf((1/2)*sqrt(2)*(m+a*T)/sqrt(T))*exp(a*m)*a-sqrt(T)*sqrt(Pi)*exp(a*m)*a+sqrt(2)*exp(-(1/2)*(m^2+a^2*T^2)/T)),
m = 0 .. K)
>int(exp(a*m)*(sqrt(T)*sqrt(Pi)*erf((1/2)*sqrt(2)*(m+a*T)/sqrt(T))*exp(a*m)*a-
>sqrt(T)*sqrt(Pi)*exp(a*m)*a+sqrt(2)*exp(-(1/2)*(m^2+a^2*T^2)/T)),
> m = 0 .. K)
Like this:
> f:= expand(exp(a*m)*(sqrt(T)*sqrt(Pi)*erf((1/2)*sqrt(2)*(m+a*T)/sqrt(T))
*exp(a*m)*a-sqrt(T)*sqrt(Pi)*exp(a*m)*a
+sqrt(2)*exp(-(1/2)*(m^2+a^2*T^2)/T)));
1/2 1/2 1/2
1/2 1/2 2 m a 2 T 2
f := T Pi erf(------ + -----------) exp(a m) a
1/2 2
2 T
1/2 1/2 2
- T Pi exp(a m) a
2 2
1/2 m T a
+ exp(a m) 2 exp(- ---) exp(- ----)
2 T 2
> F:= map(int,f,m);
/ 1/2 1/2 1/2
| 1/2 1/2 2 m a 2 T 2
F := | T Pi erf(------ + -----------) exp(a m) a dm
| 1/2 2
/ 2 T
1/2 1/2 2
- 1/2 T Pi exp(a m)
1/2 1/2 1/2
1/2 1/2 2 m a 2 T
- Pi T erf(- ------ + -----------)
1/2 2
2 T
> F := IntegrationTools[Parts](F,
erf(1/2*2^(1/2)/T^(1/2)*m+1/2*a*2^(1/2)*T^(1/2)));
1/2 1/2 1/2
1/2 1/2 2 2 m a 2 T
F := 1/2 T Pi exp(a m) erf(------ + -----------)
1/2 2
2 T
1/2 1/2 1/2
1/2 1/2 2 m a 2 T
- 1/2 Pi T erf(- ------ + -----------)
1/2 2
2 T
1/2 1/2 2
- 1/2 T Pi exp(a m)
> J := eval(F, m=K) - eval(F, m=0);
1/2 1/2 1/2
1/2 1/2 2 2 K a 2 T
J := 1/2 T Pi exp(a K) erf(------ + -----------)
1/2 2
2 T
1/2 1/2 1/2
1/2 1/2 2 K a 2 T
+ 1/2 Pi T erf(------ - -----------)
1/2 2
2 T
1/2 1/2
1/2 1/2 2 T Pi
- 1/2 T Pi exp(a K) + ----------
2
> simplify(eval(J,erf=(x -> 2*Phi(x*sqrt(2))-1)));
1/2 1/2 / K + a T K - a T \
Pi T |exp(2 a K) Phi(-------) - exp(2 a K) + Phi(-------)|
| 1/2 1/2 |
\ T T /
--
Robert Israel isr...@math.MyUniversitysInitials.ca
Department of Mathematics http://www.math.ubc.ca/~israel
University of British Columbia Vancouver, BC, Canada
Could you please explain the first 3 commands you used. They are so
mysterious to me!
Thanks a lot Robert!
"Robert Israel" <isr...@math.MyUniversitysInitials.ca> wrote in message
news:rbisrael.20080612003642$04...@news.acm.uiuc.edu...
Please don't top-post.
> Could you please explain the first 3 commands you used. They are so
> mysterious to me!
>
> Thanks a lot Robert!
>
> "Robert Israel" <isr...@math.MyUniversitysInitials.ca> wrote in message
>
> news:rbisrael.20080612003642$04...@news.acm.uiuc.edu...
>
>
>
> >> Hi all,
>
> >> In Maple, I am integrating a function involving the "erfc" function,
>
> >> the final integral result has no explicit form, but should be able to
> >> representted as a "\Phi(.)" function, where the "\Phi(.)" is the Gaussian
> >> distribution function (cumulative).
>
> >> Is there a way to force the following integral to output in the form of
> >> "\Phi(.)" in Maple?
>
> >>int(exp(a*m)*(sqrt(T)*sqrt(Pi)*erf((1/2)*sqrt(2)*(m+a*T)/sqrt(T))*exp(a*m)*a-
> >>sqrt(T)*sqrt(Pi)*exp(a*m)*a+sqrt(2)*exp(-(1/2)*(m^2+a^2*T^2)/T)),
> >> m = 0 .. K)
>
> > Like this:
>
> >> f:= expand(exp(a*m)*(sqrt(T)*sqrt(Pi)*erf((1/2)*sqrt(2)*(m+a*T)/sqrt(T))
> > *exp(a*m)*a-sqrt(T)*sqrt(Pi)*exp(a*m)*a
> > +sqrt(2)*exp(-(1/2)*(m^2+a^2*T^2)/T)));
f is the integrand. I'm just expanding it to make it a sum of three
terms.
> > 1/2 1/2 1/2
> > 1/2 1/2 2 m a 2 T 2
> > f := T Pi erf(------ + -----------) exp(a m) a
> > 1/2 2
> > 2 T
>
> > 1/2 1/2 2
> > - T Pi exp(a m) a
>
> > 2 2
> > 1/2 m T a
> > + exp(a m) 2 exp(- ---) exp(- ----)
> > 2 T 2
>
> >> F:= map(int,f,m);
Integrating each term with respect to m.
> > / 1/2 1/2 1/2
> > | 1/2 1/2 2 m a 2 T 2
> > F := | T Pi erf(------ + -----------) exp(a m) a dm
> > | 1/2 2
> > / 2 T
>
> > 1/2 1/2 2
> > - 1/2 T Pi exp(a m)
>
> > 1/2 1/2 1/2
> > 1/2 1/2 2 m a 2 T
> > - Pi T erf(- ------ + -----------)
> > 1/2 2
> > 2 T
>
> >> F := IntegrationTools[Parts](F,
> > erf(1/2*2^(1/2)/T^(1/2)*m+1/2*a*2^(1/2)*T^(1/2)));
Integrate by parts the term that hasn't been integrated.