I've the following equations:
\[\sin \left( \theta \right) = a{x^{^2}} + bx + c\]
and
\[y = \int_0^x {\tan } \left( \theta \right)dx\]
I want to obtain the expression of y as the function of x. How should
I write the code within maple?
Thanks in advance.
--
.: Hongyi Zhao [ hongyi.zhao AT gmail.com ] Free as in Freedom :.
Please see my answer to the same question you posted on sci.math.symbolic
(also you posted the same question on matlab newsgroup).
http://groups.google.com/group/sci.math.symbolic/browse_thread/thread/4d59d6b6fe17c577#
Fyi, It is considered not to be a good idea to post the same question
separately to many news groups. If you want to post the same question to
many newsgroup, you should do it all at once. This way, less people waste
their time answering the same question.
--Nasser
>> Hi all,
>>
>> I've the following equations:
>>
>> \[\sin \left( \theta \right) = a{x^{^2}} + bx + c\]
>>
>> and
>>
>> \[y = \int_0^x {\tan } \left( \theta \right)dx\]
>>
>> I want to obtain the expression of y as the function of x. How should
>> I write the code with appropriate tools?
>>
>> Thanks in advance.
>>
>> --
>> .: Hongyi Zhao [ hongyi.zhao AT gmail.com ] Free as in Freedom :.
>
>The second equation above is wrong.
>
>You can't have the limit of integration be x, and you are integrating with
>respect to x as well.
>
>(It will also help if you post you equation not in latex form, some might
>have hard time reading it if they are not familiar with latex)
Sorry for my LaTeX form of this issue, now, I give it in the following
ones:
theta=arcsin(a*x^2+b*x+c)
and
y=integrate(tan(theta),x,0,x').
Best regards,
You can sort of do this with the Symbolic Math Toolbox.
syms a b c x t
mtheta = asin(a*x^2 + b*x + c);
y = int(tan(mtheta),0,t)
The result is only partially satisfactory:
Warning: Explicit integral could not be found.
y =
int((a*x^2 + b*x + c)/(1 - (a*x^2 + b*x + c)^2)^(1/2), x = 0..t)
MATLAB simplified the tan(arcsin) expression, but then did not integrate
what remained.
Alan Weiss
MATLAB mathematical toolbox documentation
>> theta=arcsin(a*x^2+b*x+c)
>>
>> and
>>
>> y=integrate(tan(theta),x,0,x').
>>
>
> You can sort of do this with the Symbolic Math Toolbox.
>
> syms a b c x t
> mtheta = asin(a*x^2 + b*x + c);
> y = int(tan(mtheta),0,t)
>
> The result is only partially satisfactory:
>
> Warning: Explicit integral could not be found.
>
> y =
>
> int((a*x^2 + b*x + c)/(1 - (a*x^2 + b*x + c)^2)^(1/2), x = 0..t)
>
> MATLAB simplified the tan(arcsin) expression, but then did not integrate
> what remained.
>
> Alan Weiss
> MATLAB mathematical toolbox documentation
I tired this in Mathematica 7.0, under the assumptions that (a,b,c) are
real, and the upper limit of integration (which I called z) is also real.
theta = ArcSin[a*x^2 + b*x + c]
Assuming[Element[{a, b, c, z}, Reals], Integrate[Tan[theta], {x, 0, z}]]
If[(NotElement[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z), Reals] ||
(Element[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z), Reals] &&
(Re[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] <= -2 ||
Re[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] >= 0))) &&
(NotElement[(b + Sqrt[4*a + b^2 - 4*a*c])/(a*z), Reals] ||
Re[(b + Sqrt[4*a + b^2 - 4*a*c])/(a*z)] <= -2 ||
Re[(b + Sqrt[4*a + b^2 - 4*a*c])/(a*z)] >= 0) &&
(NotElement[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z), Reals] ||
Re[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] <= -2 ||
Re[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] >= 0) &&
(NotElement[(-b + Sqrt[b^2 - 4*a*(-1 + c)])/(a*z), Reals] ||
Re[(-b + Sqrt[b^2 - 4*a*(-1 + c)])/(a*z)] == 0 ||
Re[(-b + Sqrt[4*a + b^2 - 4*a*c])/(a*z)] >= 2 ||
Re[(b - Sqrt[4*a + b^2 - 4*a*c])/(a*z)] >= 0) &&
(NotElement[(-b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z), Reals] ||
Re[(-b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] == 0 ||
Re[(-b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] >= 2 ||
Re[(b - Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] >= 0) &&
(NotElement[(b - Sqrt[4*a + b^2 - 4*a*c])/(a*z), Reals] ||
NotElement[(-b + Sqrt[4*a + b^2 - 4*a*c])/(a*z), Reals] ||
Re[(b - Sqrt[4*a + b^2 - 4*a*c])/(a*z)] <= -2 ||
Re[(b - Sqrt[4*a + b^2 - 4*a*c])/(a*z)] >= 0 ||
Re[(-b + Sqrt[4*a + b^2 - 4*a*c])/(a*z)] == 0) &&
(NotElement[(b - Sqrt[b^2 - 4*a*(1 + c)])/(a*z), Reals] ||
NotElement[(-b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z), Reals] ||
Re[(b - Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] <= -2 ||
Re[(b - Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] >= 0 ||
Re[(-b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] == 0) &&
(NotElement[-(b/(2*a*z)) - Sqrt[-4*a + b^2 - 4*a*c]/(2*a*z), Reals] ||
Re[-(b/(2*a*z)) - Sqrt[-4*a + b^2 - 4*a*c]/(2*a*z)] == 0 ||
Re[-(b/(2*a*z)) - Sqrt[-4*a + b^2 - 4*a*c]/(2*a*z)] <= 0 ||
NotElement[b/(2*a*z) + Sqrt[-4*a + b^2 - 4*a*c]/(2*a*z), Reals] ||
Re[b/(2*a*z) + Sqrt[-4*a + b^2 - 4*a*c]/(2*a*z)] == -1 ||
Re[b/(2*a*z) + Sqrt[-4*a + b^2 - 4*a*c]/(2*a*z)] <= -1),
-((c*(-b + Sqrt[-4*a + b^2 - 4*a*c])^2*Sqrt[((-b - Sqrt[4*a + b^2 -
4*a*c])*
(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[-4*a + b^2 -
4*a*c])/
(2*a)))/((-b + Sqrt[-4*a + b^2 - 4*a*c])*
(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b - Sqrt[4*a + b^2 -
4*a*c])/
(2*a)))]*((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a) - (-b + Sqrt[4*a
+ b^2 - 4*a*c])/
(2*a))*Sqrt[((-b + Sqrt[4*a + b^2 - 4*a*c])*
(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[-4*a + b^2 -
4*a*c])/
(2*a)))/((-b + Sqrt[-4*a + b^2 - 4*a*c])*
(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/
(2*a)))]*Sqrt[((-b - Sqrt[-4*a + b^2 - 4*a*c])*
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/(2*a)))/
((-b + Sqrt[-4*a + b^2 - 4*a*c])*(-((-b - Sqrt[-4*a + b^2 -
4*a*c])/(2*a)) +
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)))]*
EllipticF[ArcSin[Sqrt[((-b - Sqrt[-4*a + b^2 - 4*a*c])*
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a +
b^2 - 4*a*c])/
(2*a)))/((-b + Sqrt[-4*a + b^2 - 4*a*c])*
(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a +
b^2 - 4*a*c])/
(2*a)))]], (((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a) -
(-b - Sqrt[4*a + b^2 - 4*a*c])/(2*a))*((-b - Sqrt[-4*a + b^2 -
4*a*c])/(2*a) -
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)))/(((-b - Sqrt[-4*a + b^2 -
4*a*c])/(2*a) -
(-b - Sqrt[4*a + b^2 - 4*a*c])/(2*a))*((-b + Sqrt[-4*a + b^2 -
4*a*c])/(2*a) -
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)))])/(2*a^2*Sqrt[1 - c^2]*
(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[-4*a + b^2 -
4*a*c])/(2*a))*
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/(2*a)))) +
(2*c*((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a) - (-b + Sqrt[4*a + b^2 -
4*a*c])/(2*a))*
Sqrt[((-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a +
b^2 - 4*a*c])/
(2*a))*(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + z))/
((-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/(2*a))*
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + z))]*
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + z)^2*
Sqrt[((-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[-4*a +
b^2 - 4*a*c])/
(2*a))*(-((-b - Sqrt[4*a + b^2 - 4*a*c])/(2*a)) + z))/
((-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b - Sqrt[4*a + b^2 -
4*a*c])/(2*a))*
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + z))]*
Sqrt[((-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[-4*a +
b^2 - 4*a*c])/
(2*a))*(-((-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)) + z))/
((-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/(2*a))*
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + z))]*
EllipticF[ArcSin[Sqrt[((-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) +
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a))*(-((-b - Sqrt[-4*a + b^2 -
4*a*c])/
(2*a)) + z))/((-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) +
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a))*(-((-b + Sqrt[-4*a + b^2 -
4*a*c])/
(2*a)) + z))]], (((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a) -
(-b - Sqrt[4*a + b^2 - 4*a*c])/(2*a))*((-b - Sqrt[-4*a + b^2 -
4*a*c])/(2*a) -
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)))/(((-b - Sqrt[-4*a + b^2 -
4*a*c])/(2*a) -
(-b - Sqrt[4*a + b^2 - 4*a*c])/(2*a))*((-b + Sqrt[-4*a + b^2 -
4*a*c])/(2*a) -
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)))])/
((-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[-4*a + b^2 -
4*a*c])/(2*a))*
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/(2*a))*
Sqrt[1 - (c + z*(b + a*z))^2]) - (b*(-b + Sqrt[-4*a + b^2 - 4*a*c])^2*
Sqrt[((b + Sqrt[-4*a + b^2 - 4*a*c])*(Sqrt[-4*a + b^2 - 4*a*c] -
Sqrt[4*a + b^2 - 4*a*c]))/((-b + Sqrt[-4*a + b^2 - 4*a*c])*
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c]))]*
Sqrt[(Sqrt[-4*a + b^2 - 4*a*c]*(-b - Sqrt[4*a + b^2 - 4*a*c]))/
(a*(-b + Sqrt[-4*a + b^2 - 4*a*c])*(-((-b - Sqrt[-4*a + b^2 -
4*a*c])/(2*a)) +
(-b - Sqrt[4*a + b^2 - 4*a*c])/(2*a)))]*((-b - Sqrt[-4*a + b^2 -
4*a*c])/(2*a) -
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a))*
Sqrt[(Sqrt[-4*a + b^2 - 4*a*c]*(-b + Sqrt[4*a + b^2 - 4*a*c]))/
(a*(-b + Sqrt[-4*a + b^2 - 4*a*c])*(-((-b - Sqrt[-4*a + b^2 -
4*a*c])/(2*a)) +
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)))]*
(-((1/(2*a))*((-b + Sqrt[-4*a + b^2 - 4*a*c])*EllipticF[
ArcSin[Sqrt[((b + Sqrt[-4*a + b^2 - 4*a*c])*(Sqrt[-4*a + b^2 -
4*a*c] - Sqrt[
4*a + b^2 - 4*a*c]))/((-b + Sqrt[-4*a + b^2 - 4*a*c])*
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c]))]],
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c])^2/
(Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 - 4*a*c])^2])) +
(1/a)*(Sqrt[-4*a + b^2 - 4*a*c]*EllipticPi[
(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/(2*a))/
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/
(2*a)), ArcSin[Sqrt[((b + Sqrt[-4*a + b^2 - 4*a*c])*(Sqrt[-4*a +
b^2 - 4*a*c] -
Sqrt[4*a + b^2 - 4*a*c]))/((-b + Sqrt[-4*a + b^2 - 4*a*c])*
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c]))]],
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c])^2/
(Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 - 4*a*c])^2])))/
(2*a^2*Sqrt[1 - c^2]*(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) +
(-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a))*((-b + Sqrt[-4*a + b^2 -
4*a*c])/(2*a) -
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a))) - (1/Sqrt[1 - c^2])*
(a*(-(((-b - Sqrt[-4*a + b^2 - 4*a*c])*(-b - Sqrt[4*a + b^2 - 4*a*c])*
(-b + Sqrt[4*a + b^2 - 4*a*c]))/(8*a^3)) +
(1/(4*a^2))*((-b + Sqrt[-4*a + b^2 - 4*a*c])^2*
Sqrt[((b + Sqrt[-4*a + b^2 - 4*a*c])*(Sqrt[-4*a + b^2 - 4*a*c] -
Sqrt[4*a + b^2 - 4*a*c]))/((-b + Sqrt[-4*a + b^2 - 4*a*c])*
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c]))]*
Sqrt[(Sqrt[-4*a + b^2 - 4*a*c]*(-b - Sqrt[4*a + b^2 - 4*a*c]))/
(a*(-b + Sqrt[-4*a + b^2 - 4*a*c])*(-((-b - Sqrt[-4*a + b^2 -
4*a*c])/(2*a)) +
(-b - Sqrt[4*a + b^2 - 4*a*c])/(2*a)))]*
Sqrt[(Sqrt[-4*a + b^2 - 4*a*c]*(-b + Sqrt[4*a + b^2 - 4*a*c]))/
(a*(-b + Sqrt[-4*a + b^2 - 4*a*c])*(-((-b - Sqrt[-4*a + b^2 -
4*a*c])/(2*a)) +
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)))]*
(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/(2*a))*
((a*(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b - Sqrt[4*a +
b^2 - 4*a*c])/
(2*a))*EllipticE[ArcSin[Sqrt[((b + Sqrt[-4*a + b^2 - 4*a*c])*
(Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 - 4*a*c]))/(
(-b + Sqrt[-4*a + b^2 - 4*a*c])*(Sqrt[-4*a + b^2 - 4*a*c] +
Sqrt[4*a + b^2 - 4*a*c]))]], (Sqrt[-4*a + b^2 - 4*a*c] +
Sqrt[
4*a + b^2 - 4*a*c])^2/(Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a +
b^2 - 4*a*c])^
2])/Sqrt[-4*a + b^2 - 4*a*c] +
(a*(((-b + Sqrt[-4*a + b^2 - 4*a*c])*(-((-b + Sqrt[-4*a + b^2 -
4*a*c])/(2*a)) -
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)))/(2*a) -
((-b - Sqrt[-4*a + b^2 - 4*a*c])*((-b + Sqrt[-4*a + b^2 -
4*a*c])/(2*a) -
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)))/(2*a))*
EllipticF[ArcSin[Sqrt[((b + Sqrt[-4*a + b^2 - 4*a*c])*(Sqrt[-4*a
+ b^2 -
4*a*c] - Sqrt[4*a + b^2 - 4*a*c]))/((-b + Sqrt[-4*a +
b^2 - 4*a*c])*
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c]))]],
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c])^2/
(Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 - 4*a*c])^2])/
(Sqrt[-4*a + b^2 - 4*a*c]*(-((-b + Sqrt[-4*a + b^2 -
4*a*c])/(2*a)) +
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a))) -
((-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) - (-b + Sqrt[-4*a +
b^2 - 4*a*c])/
(2*a) - (-b - Sqrt[4*a + b^2 - 4*a*c])/(2*a) - (-b + Sqrt[4*a +
b^2 - 4*a*c])/
(2*a))*EllipticPi[(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) +
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a))/(-((-b + Sqrt[-4*a +
b^2 - 4*a*c])/
(2*a)) + (-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)),
ArcSin[Sqrt[((b + Sqrt[-4*a + b^2 - 4*a*c])*(Sqrt[-4*a + b^2 -
4*a*c] -
Sqrt[4*a + b^2 - 4*a*c]))/((-b + Sqrt[-4*a + b^2 - 4*a*c])*
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c]))]],
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c])^2/
(Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 - 4*a*c])^2])/
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/
(2*a)))))) + (2*b*((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a) -
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a))*(-((-b + Sqrt[-4*a + b^2 -
4*a*c])/(2*a)) + z)^
2*Sqrt[(Sqrt[-4*a + b^2 - 4*a*c]*(-((-b - Sqrt[4*a + b^2 -
4*a*c])/(2*a)) + z))/
(a*(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b - Sqrt[4*a + b^2 -
4*a*c])/(2*a))*
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + z))]*
Sqrt[(Sqrt[-4*a + b^2 - 4*a*c]*(-((-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a))
+ z))/
(a*(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/(2*a))*
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + z))]*
Sqrt[((Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 - 4*a*c])*
(b + Sqrt[-4*a + b^2 - 4*a*c] + 2*a*z))/((Sqrt[-4*a + b^2 - 4*a*c] +
Sqrt[4*a + b^2 - 4*a*c])*(-b + Sqrt[-4*a + b^2 - 4*a*c] - 2*a*z))]*
(-((1/(2*a))*((-b + Sqrt[-4*a + b^2 - 4*a*c])*EllipticF[
ArcSin[Sqrt[((Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 - 4*a*c])*
(b + Sqrt[-4*a + b^2 - 4*a*c] + 2*a*z))/((Sqrt[-4*a + b^2 -
4*a*c] + Sqrt[
4*a + b^2 - 4*a*c])*(-b + Sqrt[-4*a + b^2 - 4*a*c] -
2*a*z))]],
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c])^2/
(Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 - 4*a*c])^2])) +
(1/a)*(Sqrt[-4*a + b^2 - 4*a*c]*EllipticPi[
(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/(2*a))/
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/
(2*a)), ArcSin[Sqrt[((Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a +
b^2 - 4*a*c])*
(b + Sqrt[-4*a + b^2 - 4*a*c] + 2*a*z))/((Sqrt[-4*a + b^2 -
4*a*c] +
Sqrt[4*a + b^2 - 4*a*c])*(-b + Sqrt[-4*a + b^2 - 4*a*c] -
2*a*z))]],
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c])^2/
(Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 - 4*a*c])^2])))/
((-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[-4*a + b^2 -
4*a*c])/(2*a))*
((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a) - (-b + Sqrt[4*a + b^2 -
4*a*c])/(2*a))*
Sqrt[1 - (c + z*(b + a*z))^2]) +
(a*((-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + z)*
(-((-b - Sqrt[4*a + b^2 - 4*a*c])/(2*a)) + z)*
(-((-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)) + z) +
(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/(2*a))*
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + z)^2*
Sqrt[(Sqrt[-4*a + b^2 - 4*a*c]*(-((-b - Sqrt[4*a + b^2 -
4*a*c])/(2*a)) + z))/
(a*(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b - Sqrt[4*a +
b^2 - 4*a*c])/
(2*a))*(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + z))]*
Sqrt[(Sqrt[-4*a + b^2 - 4*a*c]*(-((-b + Sqrt[4*a + b^2 -
4*a*c])/(2*a)) + z))/
(a*(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a +
b^2 - 4*a*c])/
(2*a))*(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + z))]*
Sqrt[((Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 - 4*a*c])*
(b + Sqrt[-4*a + b^2 - 4*a*c] + 2*a*z))/((Sqrt[-4*a + b^2 - 4*a*c]
+
Sqrt[4*a + b^2 - 4*a*c])*(-b + Sqrt[-4*a + b^2 - 4*a*c] -
2*a*z))]*
((a*(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b - Sqrt[4*a +
b^2 - 4*a*c])/
(2*a))*EllipticE[ArcSin[Sqrt[((Sqrt[-4*a + b^2 - 4*a*c] -
Sqrt[4*a + b^2 -
4*a*c])*(b + Sqrt[-4*a + b^2 - 4*a*c] + 2*a*z))/
((Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c])*(-b +
Sqrt[-4*a + b^2 - 4*a*c] - 2*a*z))]],
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c])^2/
(Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 - 4*a*c])^2])/
Sqrt[-4*a + b^2 - 4*a*c] +
(a*(((-b + Sqrt[-4*a + b^2 - 4*a*c])*(-((-b + Sqrt[-4*a + b^2 -
4*a*c])/(2*a)) -
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)))/(2*a) -
((-b - Sqrt[-4*a + b^2 - 4*a*c])*((-b + Sqrt[-4*a + b^2 -
4*a*c])/(2*a) -
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)))/(2*a))*
EllipticF[ArcSin[Sqrt[((Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a +
b^2 - 4*a*c])*(b +
Sqrt[-4*a + b^2 - 4*a*c] + 2*a*z))/((Sqrt[-4*a + b^2 -
4*a*c] +
Sqrt[4*a + b^2 - 4*a*c])*(-b + Sqrt[-4*a + b^2 - 4*a*c] -
2*a*z))]],
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c])^2/
(Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 - 4*a*c])^2])/
(Sqrt[-4*a + b^2 - 4*a*c]*(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a))
+
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a))) -
((-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) - (-b + Sqrt[-4*a + b^2 -
4*a*c])/
(2*a) - (-b - Sqrt[4*a + b^2 - 4*a*c])/(2*a) - (-b + Sqrt[4*a +
b^2 - 4*a*c])/
(2*a))*EllipticPi[(-((-b - Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) +
(-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a))/(-((-b + Sqrt[-4*a +
b^2 - 4*a*c])/(2*
a)) + (-b + Sqrt[4*a + b^2 - 4*a*c])/(2*a)),
ArcSin[Sqrt[((Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 -
4*a*c])*(b +
Sqrt[-4*a + b^2 - 4*a*c] + 2*a*z))/((Sqrt[-4*a + b^2 -
4*a*c] +
Sqrt[4*a + b^2 - 4*a*c])*(-b + Sqrt[-4*a + b^2 - 4*a*c] -
2*a*z))]],
(Sqrt[-4*a + b^2 - 4*a*c] + Sqrt[4*a + b^2 - 4*a*c])^2/
(Sqrt[-4*a + b^2 - 4*a*c] - Sqrt[4*a + b^2 - 4*a*c])^2])/
(-((-b + Sqrt[-4*a + b^2 - 4*a*c])/(2*a)) + (-b + Sqrt[4*a + b^2 -
4*a*c])/
(2*a)))))/Sqrt[1 - (c + z*(b + a*z))^2],
Integrate[(c + x*(b + a*x))/Sqrt[1 - (c + x*(b + a*x))^2], {x, 0, z},
Assumptions -> Element[a | b | c | z, Reals] &&
!((NotElement[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z), Reals] ||
(Element[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z), Reals] &&
(Re[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] <= -2 ||
Re[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] >= 0))) &&
(NotElement[(b + Sqrt[4*a + b^2 - 4*a*c])/(a*z), Reals] ||
Re[(b + Sqrt[4*a + b^2 - 4*a*c])/(a*z)] <= -2 ||
Re[(b + Sqrt[4*a + b^2 - 4*a*c])/(a*z)] >= 0) &&
(NotElement[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z), Reals] ||
Re[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] <= -2 ||
Re[(b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] >= 0) &&
(NotElement[(-b + Sqrt[b^2 - 4*a*(-1 + c)])/(a*z), Reals] ||
Re[(-b + Sqrt[b^2 - 4*a*(-1 + c)])/(a*z)] == 0 ||
Re[(-b + Sqrt[4*a + b^2 - 4*a*c])/(a*z)] >= 2 ||
Re[(b - Sqrt[4*a + b^2 - 4*a*c])/(a*z)] >= 0) &&
(NotElement[(-b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z), Reals] ||
Re[(-b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] == 0 ||
Re[(-b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] >= 2 ||
Re[(b - Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] >= 0) &&
(NotElement[(b - Sqrt[4*a + b^2 - 4*a*c])/(a*z), Reals] ||
NotElement[(-b + Sqrt[4*a + b^2 - 4*a*c])/(a*z), Reals] ||
Re[(b - Sqrt[4*a + b^2 - 4*a*c])/(a*z)] <= -2 ||
Re[(b - Sqrt[4*a + b^2 - 4*a*c])/(a*z)] >= 0 ||
Re[(-b + Sqrt[4*a + b^2 - 4*a*c])/(a*z)] == 0) &&
(NotElement[(b - Sqrt[b^2 - 4*a*(1 + c)])/(a*z), Reals] ||
NotElement[(-b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z), Reals] ||
Re[(b - Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] <= -2 ||
Re[(b - Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] >= 0 ||
Re[(-b + Sqrt[b^2 - 4*a*(1 + c)])/(a*z)] == 0) &&
(NotElement[-(b/(2*a*z)) - Sqrt[-4*a + b^2 - 4*a*c]/(2*a*z), Reals]
||
Re[-(b/(2*a*z)) - Sqrt[-4*a + b^2 - 4*a*c]/(2*a*z)] == 0 ||
Re[-(b/(2*a*z)) - Sqrt[-4*a + b^2 - 4*a*c]/(2*a*z)] <= 0 ||
NotElement[b/(2*a*z) + Sqrt[-4*a + b^2 - 4*a*c]/(2*a*z), Reals] ||
Re[b/(2*a*z) + Sqrt[-4*a + b^2 - 4*a*c]/(2*a*z)] == -1 ||
Re[b/(2*a*z) + Sqrt[-4*a + b^2 - 4*a*c]/(2*a*z)] <= -1))]]
--Nasser
This is a beauty, isn't it - and it doesn't contain the imaginary unit
anymore! But I suspect a less impressive expression also not involving
"ImaginaryI" can be obtained by a suitable transformation of Andreas'
result.
Martin.