On Mon, 20 Nov 2023 11:31:58 -0500, Bob Smith wrote:
>On 11/19/2023 1:17 AM, Rosario19 wrote:
>> Don't you think I don't like APL, or I think I have right...
>> for me ," is bugged
>>
>> ({leftshoe},1),{dieresis}1 2
>> +2------------+
>> Ś+2---+ +2---+Ś
>> ŚŚ 1 1Ś Ś 1 2ŚŚ
>> Ś+~---+ +~---+2
>> +?------------+
>> 1,{dieresis}1 2
>> +2------------+
>> Ś+2---+ +2---+Ś
>> ŚŚ 1 1Ś Ś 1 2ŚŚ
>> Ś+~---+ +~---+2
>> +?------------+
>> ({leftshoe},1)
>> +----+
>> Ś+1-+Ś
>> ŚŚ 1ŚŚ
>> Ś+~-+2
>> +?---+
>> 1
>> 1
>> ~
>>
>> Why the same result when
>> This object
>> ({leftshoe},1)
>> has different type of this
>> 1
>> ?
>
>The expression
>
>(?,1),¨1 2 ?? ((,1),1) ((,1),2), and
> 1 ,¨1 2 ?? ( 1 ,1) ( 1 ,2)
>
>catenating a one-element vector to a scalar is the same as catenating a
>scalar to a scalar, so the results are the same.
>
>
>> The same
>> ,{dieresis} (1 1)(2 2)(3 3)
>> +3-------------------+
>> Ś+2---+ +2---+ +2---+Ś
>> ŚŚ 1 1Ś Ś 2 2Ś Ś 3 3ŚŚ
>> Ś+~---+ +~---+ +~---+2
>> +?-------------------+
>> ,{dieresis} 1 2 3 4
>> +4------------------+
>> Ś+1-+ +1-+ +1-+ +1-+Ś
>> ŚŚ 1Ś Ś 2Ś Ś 3Ś Ś 4ŚŚ
>> Ś+~-+ +~-+ +~-+ +~-+2
> set?1 7 4 ? inp?2
> set[010 1?inp,?set]
>1 7
>7 4
>1 4
>
>or if you want the answer in lexicographic order
>
> set[010 2?inp,?set]
>1 7
>1 4
>7 4
I find that
{leftbrace}{omega}[010 2{\x203C}{alpha},{rho}{omega}]{rightbrace}
solve the problem if {alpha}>1.
this below would solve the problem for each {alpha} in Ints
{leftbrace}{alpha}{leftcaretunderbar}1:{commabar}{omega}{diamond}{omega}[010
2{\x203C}{alpha},{rho}{omega}]{rightbrace}
but the autor of the question said is not possible to use combinations
functions and should work for each {alpha} in Ints
so this is my little solution
{leftbrace}{alpha}{leftcaretunderbar}1:{commabar}{omega}{diamond}{omega}[{rightshoe}{uparrow},/b{leftshoe}{dieresistilde}{upcaret}/{dieresis}2</{dieresis}b{leftarrow},{iota}{alpha}{rho}{notequalunderbar}{omega}]{rightbrace}
34 chars solution.
I dont know if {iota}{alpha}{rho}{notequalunderbar}{omega} is allowed
because it seems generate each {alpha} index in
1..{notequalunderbar}{omega}
1 f 5 6 7 8
+1-+
4 5Ś
Ś 6Ś
Ś 7Ś
Ś 8Ś
+~-+
3 f 5 6 7 8
+3-----+
4 5 6 7Ś
Ś 5 6 8Ś
Ś 5 7 8Ś
Ś 6 7 8Ś
+~-----+
4 f 5 6 7 8
+4-------+
1 5 6 7 8Ś
+~-------+
5 f 5 6 7 8
+5-+
0 0Ś
+~-+
6 f 5 6 7 8
+6-+
0 0Ś
+~-+
0 f 5 6 7 8
+1-+
4 5Ś
Ś 6Ś
Ś 7Ś
Ś 8Ś
+~-+
>> I think for base of induction one function q solution has to return as
>> 1 q 1 2 3 4
>> +4------------------+
>> Ś+1-+ +1-+ +1-+ +1-+Ś
>> ŚŚ 1Ś Ś 2Ś Ś 3Ś Ś 4ŚŚ
>> Ś+~-+ +~-+ +~-+ +~-+2
>> +?------------------+
>> and as
>> 4 q 1 2 3 4
>> +----------+
>> Ś+4-------+Ś
>> ŚŚ 1 2 3 4ŚŚ
>> Ś+~-------+2