My quarterly RAID5 rant, enhanced.

1 view
Skip to first unread message

Art S. Kagel

unread,
Jul 31, 2003, 4:49:28 PM7/31/03
to
RAID5 versus RAID10 (or even RAID3 or RAID4)

OK here is the deal, RAID5 uses ONLY ONE parity drive per stripe and many
RAID5 arrays are 5 drives (4 data and 1 parity though it is not a single
drive that is holding all of the parity as in RAID 3 & 4 but read on). If
you have 10 drives or say 20GB each for 200GB RAID5 will use 20% for
parity so you will have 160GB of storage. Now since RAID10, like
mirroring (RAID1), uses 1 mirror drive for each primary drive you are
using 50% for redundancy so to get the same 160GB of storage you will need
8 pairs or 16 - 20GB drives, which is why RAID5 is so popular. This intro
is just to put things into perspective .

RAID5 is physically a stripe set like RAID0 but with data recovery
included. RAID5 reserves one disk block out of each stripe block for
parity data. The parity block contains an error correction code which can
correct any error in the RAID5 block, in effect it is used in combination
with the remaining data blocks to recreate any single missing block, gone
missing because a drive has failed. The innovation of RAID5 over RAID3 &
RAID4 is that the parity is distributed on a round robin basis so that
there can be independent reading of different blocks from the several
drives. This is why RAID5 became more popular than RAID3 & RAID4. So, if
Drive2 fails blocks 1,2,4,5,6 &7 are data blocks on this drive and blocks
3 and 8 are parity blocks on this drive. So that means that the parity on
Drive5 will be used to recreate the data block from Disk2 if block 1 is
requested before a new drive replaces Drive2 or during the rebuilding of
the new Drive2 replacement. Likewise the parity on Drive1 will be used to
repair block 2 and the parity on Drive3 will repair block4, etc. For
block 2 all the data is safely on the remaining drives but during the
rebuilding of Drive2's replacement a new parity block will be calculated
from the block 2 data and will be written to Drive 2.

Now when a disk block is read from the array the RAID software/firmware
calculates which RAID block contains the disk block, which drive the disk
block is on and which drive contains the parity block for that RAID block
and reads ONLY the data drive. It returns the data block . If you later
modify the data block it recalculates the parity by subtracting the old
block and adding in the new version then in two separate operations it
writes the data block followed by the new parity block. To do this it
must first read the parity block from whichever drive contains the parity
for that stripe block and reread the unmodified data for the updated block
from the original drive. This read-read-write-write is known as the RAID5
write penalty since these two writes are sequential and synchronous the
write system call cannot return until the reread and both writes complete,
for safety, so writing to RAID5 is up to 50% slower than RAID0 for an
array of the same capacity.

Now RAID10:

RAID10 is one of the combinations of RAID1 (mirroring) and RAID0
(striping) which are possible. When N mirrored pairs are striped together
this is called RAID10 because the mirroring is applied first. The other
option is to create two stripe sets and mirror them one to the other, this
is known as RAID01. In either a RAID01 or RAID10 system each and every
disk block is completely duplicated on its drive's mirror.
Performance-wise both RAID01 and RAID10 are functionally equivalent. The
difference comes in during recover where RAID01 suffers from some of the
same problems I will describe affecting RAID5 while RAID10 does not.

Now if a drive in the RAID5 array dies, is removed or is shut off data is
returned by reading the blocks from the remaining drives and calculating
the missing data using the parity, assuming the defunct drive is not the
parity block drive for that RAID block. Note that it takes 4 physical
reads to replace the missing disk block (for a 5 drive array) for four out
of every five disk blocks.

If a drive in the RAID10 array dies data is returned from its mirror drive
in a single read.

One begins to get an inkling of what is going on.

OK, so that brings us to the final question of the day which is: What is
the problem with RAID5? It does recover a failed drive right? So writes
are slower, I don't do enough writing to worry about it and the cache
helps a lot also, I've got LOTS of cache! The problem is that despite the
improved reliability of modern drives and the improved error correction
codes on most drives, and even despite the additional 8 bytes of error
correction that EMC puts on every Clariion drive disk block, it is more
than a little possible that a drive will become flaky and begin to return
garbage. This is known as partial media failure. Now SCSI controllers
reserve several hundred disk blocks to be remapped to replace fading
sectors with unused ones, but if the drive is going these will not last
very long and will run out and SCSI does NOT report correctable errors
back to the OS! Therefore you will not know the drive is becoming
unstable until it is too late and there are no more replacement sectors
and the drive begins to return garbage. When this happens, since RAID5
does not EVER check parity on read (RAID3 & RAID4 do BTW and both perform
better for databases than RAID5 to boot) when you write the garbage sector
back garbage parity will be calculated and your RAID5 integrity is lost!
Similarly if a drive fails and one of the remaining drives is flaky the
replacement will be rebuilt with garbage also.

Need more? During recovery read performance for a RAID5 array is degraded
by as much as 80%. Some advanced arrays let you configure the preference
more toward recovery or toward performance. However, doing so will
increase recovery time and increase the likelihood of losing a second
drive in the array before recovery completes resulting in catastrophic
data loss. RAID10 on the other hand will only be recovering one drive out
of 4 or more pairs with performance ONLY of reads from the recovering pair
degraded making the performance hit to the array overall only about 20%!
Plus there is no parity calculation time used during recovery - it's a
straight data copy.

What about that thing about losing a second drive? Well with RAID10 there
is no danger unless the one mirror that is recovering also fails and
that's 80% or more less likely than that any other drive in a RAID5 array
will fail! And since most multiple drive failures are caused by
undetected manufacturing defects you can make even this possibility
vanishingly small by making sure to mirror every drive with one from a
different manufacturer's lot number. ("Oh", you say, "this schenario does
not seem likely!" Pooh, we lost 50 drives in two weeks when a batch of
200 IBM drives began to fail. IBM discovered that the single lot of
drives would have their spindle bearings freeze after so many hours of
operation. Fortunately due in part to RAID10 and in part to a herculean
effort by DG techs and our own people over 2 weeks no data was lost.
HOWEVER, one RAID5 filesystem was a total loss after a second drive failed
during recover. Fortunately everything was on tape.

Conclusion? For safety and performance favor RAID10 first, RAID3 second,
RAID4 third, and RAID5 last! The original reason for the RAID2-5 specs
was that the high cost of disks was making RAID1, mirroring, impractical.
That is no longer the case! Drives are commodity priced, even the biggest
fastest drives are cheaper in absolute dollars than drives were then and
cost per MB is a tiny fraction of what it was. Does RAID5 make ANY sense
anymore? Obviously I think not.

To put things into perspective: If a drive costs $1000US then switching
from a 4 pair RAID10 array to a 5 drive RAID5 array will save 3 drives or
$3000US. What is the cost of overtime, wear and tear on the technicians,
DBAs, managers, and customers of even a recovery scare? What is the cost
of reduced performance and possibly reduced customer satisfaction? Finally
what is the cost of lost business if data is unrecoverable? I maintain
that the drives are FAR cheaper!

Art S. Kagel

Paul Watson

unread,
Aug 1, 2003, 4:34:21 AM8/1/03
to
"Art S. Kagel" wrote:
>
> RAID5 versus RAID10 (or even RAID3 or RAID4)
>
{cutting]

> will fail! And since most multiple drive failures are caused by
> undetected manufacturing defects you can make even this possibility
> vanishingly small by making sure to mirror every drive with one from a
> different manufacturer's lot number. ("Oh", you say, "this schenario does
> not seem likely!" Pooh, we lost 50 drives in two weeks when a batch of
> 200 IBM drives began to fail.

I seen the same problem, always check the manufacturer batch id and
don't
fill a machine with disks from the same batch - it will come back and
bite
you.

[more cutting]

--
Paul Watson #
Oninit Ltd # Growing old is mandatory
Tel: +44 1436 672201 # Growing up is optional
Fax: +44 1436 678693 #
Mob: +44 7818 003457 #
www.oninit.com #

Impy

unread,
Aug 1, 2003, 12:59:28 PM8/1/03
to
Might I suggest you rename this to: My Random Rant About RAID (you don't
seem to be sticking to your schedule...) ;-)

"Art S. Kagel" <ka...@bloomberg.net> wrote in message
news:pan.2003.07.31.16....@bloomberg.net...

Reply all
Reply to author
Forward
0 new messages