Here's the PKWARE Data Compression Library format (and a request)

717 views
Skip to first unread message

Ben Rudiak-Gould

unread,
Aug 13, 2001, 2:38:30 PM8/13/01
to
I'm writing a utility which needs to support a third-party file format
which happens to use the PKWARE Data Compression Library for
compression. After discovering that no one knows how to decompress
this library's compressed format, I decided to try reverse-engineering
it. It turned out not to be too difficult.

A complete description of the format is below, for the edification of
anyone who's interested. The description is hereby placed in the
public domain.

I also have a request: could someone implement a decompression
function for this format in ANSI C, and release it into the public
domain or with a license which permits its inclusion in GPLed code?
The reason I'm asking someone else to do this is that I would like a
true clean-room implementation to avoid copyright problems. If you
have any experience with Lempel-Ziv and Huffman decoding this should
be easy, because as you'll see the format is nothing more than
Lempel-Ziv-Huffman with static tables.


-- Ben


_____________________________ cut here _____________________________

The following description assumes that the reader is familiar with
Lempel-Ziv sliding dictionary compression.

A PKWARE Data Compression Library compressed stream consists of a
two-byte header followed by a bitstream of arbitrary length.

The first byte of the header is either 0 or 1, and determines the way
in which literal bytes are represented in the bitstream (see below).

The second byte of the header is equal to 4, 5, or 6, and determines
the size of the sliding-window dictionary: 4, 5, and 6 indicate a 1K,
2K and 4K dictionary respectively.

The bitstream is stored in little-endian order. For example, the bytes
0F 15 represent the bitstream 1111000010101000.

The bitstream consists of a sequence of standard Lempel-Ziv tokens,
represented by a prefix-free code. That is, each code word represents
either a literal byte or a (length,offset) pair. One code word is
reserved to indicate end-of-stream.

Tokens are represented as follows:

If the first bit of the token's code word is 0, the token is a literal
byte. If it is 1, the token is a (length,offset) pair or
end-of-stream.

Literal bytes are represented in one of two different ways. If the
first byte of the header is equal to 0, the bytes are represented as
eight-bit little-endian binary numbers in the obvious way. (The total
code word length in this case is 9 bits, including the leading 0 bit.)

If the first byte of the header is equal to 1, literal bytes are
represented by the following bit sequences:

byte representation
20 1111
45 11101
61 11100
65 11011
69 11010
6c 11001
6e 11000
6f 10111
72 10110
73 10101
74 10100
75 10011
2d 100101
31 100100
41 100011
43 100010
44 100001
49 100000
4c 011111
4e 011110
4f 011101
52 011100
53 011011
54 011010
62 011001
63 011000
64 010111
66 010110
67 010101
68 010100
6d 010011
70 010010
0a 0100011
0d 0100010
28 0100001
29 0100000
2c 0011111
2e 0011110
30 0011101
32 0011100
33 0011011
34 0011010
35 0011001
37 0011000
38 0010111
3d 0010110
42 0010101
46 0010100
4d 0010011
50 0010010
55 0010001
6b 0010000
77 0001111
09 00011101
22 00011100
27 00011011
2a 00011010
2f 00011001
36 00011000
39 00010111
3a 00010110
47 00010101
48 00010100
57 00010011
5b 00010010
5f 00010001
76 00010000
78 00001111
79 00001110
2b 000011011
3e 000011010
4b 000011001
56 000011000
58 000010111
59 000010110
5d 000010101
21 0000101001
24 0000101000
26 0000100111
71 0000100110
7a 0000100101
00 00001001001
3c 00001001000
3f 00001000111
4a 00001000110
51 00001000101
5a 00001000100
5c 00001000011
6a 00001000010
7b 00001000001
7c 00001000000
01 000001111111
02 000001111110
03 000001111101
04 000001111100
05 000001111011
06 000001111010
07 000001111001
08 000001111000
0b 000001110111
0c 000001110110
0e 000001110101
0f 000001110100
10 000001110011
11 000001110010
12 000001110001
13 000001110000
14 000001101111
15 000001101110
16 000001101101
17 000001101100
18 000001101011
19 000001101010
1b 000001101001
1c 000001101000
1d 000001100111
1e 000001100110
1f 000001100101
23 000001100100
25 000001100011
3b 000001100010
40 000001100001
5e 000001100000
60 000001011111
7d 000001011110
7e 000001011101
7f 000001011100
b0 000001011011
b1 000001011010
b2 000001011001
b3 000001011000
b4 000001010111
b5 000001010110
b6 000001010101
b7 000001010100
b8 000001010011
b9 000001010010
ba 000001010001
bb 000001010000
bc 000001001111
bd 000001001110
be 000001001101
bf 000001001100
c0 000001001011
c1 000001001010
c2 000001001001
c3 000001001000
c4 000001000111
c5 000001000110
c6 000001000101
c7 000001000100
c8 000001000011
c9 000001000010
ca 000001000001
cb 000001000000
cc 000000111111
cd 000000111110
ce 000000111101
cf 000000111100
d0 000000111011
d1 000000111010
d2 000000111001
d3 000000111000
d4 000000110111
d5 000000110110
d6 000000110101
d7 000000110100
d8 000000110011
d9 000000110010
da 000000110001
db 000000110000
dc 000000101111
dd 000000101110
de 000000101101
df 000000101100
e1 000000101011
e5 000000101010
e9 000000101001
ee 000000101000
f2 000000100111
f3 000000100110
f4 000000100101
1a 0000001001001
80 0000001001000
81 0000001000111
82 0000001000110
83 0000001000101
84 0000001000100
85 0000001000011
86 0000001000010
87 0000001000001
88 0000001000000
89 0000000111111
8a 0000000111110
8b 0000000111101
8c 0000000111100
8d 0000000111011
8e 0000000111010
8f 0000000111001
90 0000000111000
91 0000000110111
92 0000000110110
93 0000000110101
94 0000000110100
95 0000000110011
96 0000000110010
97 0000000110001
98 0000000110000
99 0000000101111
9a 0000000101110
9b 0000000101101
9c 0000000101100
9d 0000000101011
9e 0000000101010
9f 0000000101001
a0 0000000101000
a1 0000000100111
a2 0000000100110
a3 0000000100101
a4 0000000100100
a5 0000000100011
a6 0000000100010
a7 0000000100001
a8 0000000100000
a9 0000000011111
aa 0000000011110
ab 0000000011101
ac 0000000011100
ad 0000000011011
ae 0000000011010
af 0000000011001
e0 0000000011000
e2 0000000010111
e3 0000000010110
e4 0000000010101
e6 0000000010100
e7 0000000010011
e8 0000000010010
ea 0000000010001
eb 0000000010000
ec 0000000001111
ed 0000000001110
ef 0000000001101
f0 0000000001100
f1 0000000001011
f5 0000000001010
f6 0000000001001
f7 0000000001000
f8 0000000000111
f9 0000000000110
fa 0000000000101
fb 0000000000100
fc 0000000000011
fd 0000000000010
fe 0000000000001
ff 0000000000000

(length,offset) pairs are represented by a bit sequence for the
length, followed by a bit sequence for the most significant six bits
of the offset, followed by the remaining bits of the offset in
little-endian order. (Note that the number of remaining bits is equal
to the value in the second byte of the header.) There is one exception
to this: if the copy length is equal to 2, then only two low-order
offset bits are encoded instead of 4, 5, or 6, limiting the offset to
the most recent 256 bytes regardless of dictionary size.

The copy length is represented as follows:

length representation
2 101
3 11
4 100
5 011
6 0101
7 0100
8 0011
9 00101
10-11 00100x
12-15 00011xx
16-23 00010xxx
24-39 000011xxxx
40-71 000010xxxxx
72-135 000001xxxxxx
136-263 0000001xxxxxxx
264-518 0000000xxxxxxxx

In this table the bits represented by 'x' contain the offset within
the corresponding range, represented as a little-endian binary number.
For example, the line reading:

16-23 00010xxx

is shorthand for this:

16 00010000
17 00010100
18 00010010
19 00010110
20 00010001
21 00010101
22 00010011
23 00010111

The sequence 000000011111111, which would indicate a copy length of
519 if the table above were extended in the natural way, instead
indicates end-of-stream.

The upper six bits of the copy offset are represented as follows:

offset
bits representation
00 11
01 1011
02 1010
03 10011
04 10010
05 10001
06 10000
07 011111
08 011110
09 011101
0a 011100
0b 011011
0c 011010
0d 011001
0e 011000
0f 010111
10 010110
11 010101
12 010100
13 010011
14 010010
15 010001
16 0100001
17 0100000
18 0011111
19 0011110
1a 0011101
1b 0011100
1c 0011011
1d 0011010
1e 0011001
1f 0011000
20 0010111
21 0010110
22 0010101
23 0010100
24 0010011
25 0010010
26 0010001
27 0010000
28 0001111
29 0001110
2a 0001101
2b 0001100
2c 0001011
2d 0001010
2e 0001001
2f 0001000
30 00001111
31 00001110
32 00001101
33 00001100
34 00001011
35 00001010
36 00001001
37 00001000
38 00000111
39 00000110
3a 00000101
3b 00000100
3c 00000011
3d 00000010
3e 00000001
3f 00000000

Once these bits are combined with the low-order bits, the resulting
number is an index from the end of the dictionary. That is, 0
represents the most-recently decoded byte, 1 the next-most-recently,
and so on. The range to be copied begins at the indexed byte.

The range to be copied can extend past the end of the dictionary. This
is handled in the usual Lempel-Ziv way: the bytes within the
dictionary are repeated cyclically as necessary to fill the rest of
the range.

The dictionary is not pre-initialized, so the range cannot extend past
the beginning of the file.

Here's a sample compressed stream and how it would be decoded.

The stream is 00 04 82 24 25 c7 80 7f.

The first byte of the header is 0, so the fixed-width representation
is used for literal bytes.

The second byte is 4, so the dictionary is 1K in size.

The bitstream portion breaks down as follows:

0 10000010 literal byte 41 (ASCII 'A')
0 10010010 literal byte 49 (ASCII 'I')
1 001001 110001 copy 11 bytes starting at dictionary byte 1
(counting from the end starting with 0)
1 000000011111111 end of stream
0 padding to multiple of 8 bits (ignored)

This stream would decompress to "AIAIAIAIAIAIA".

_____________________________ cut here _____________________________

Mark Nelson

unread,
Aug 16, 2001, 10:06:46 PM8/16/01
to
"Ben Rudiak-Gould" <jc...@hotmail.com> wrote in message
news:34259d52.01081...@posting.google.com...

> I'm writing a utility which needs to support a third-party file format
> which happens to use the PKWARE Data Compression Library for

Hi Ben,

This is fantastic information which many folks have asked for in the past.
With your permission, I'd like to save a copy of your post in the Data
Compression Library. Okay?

--
|
| Data Compression Library - http://www.dogma.net/DataCompression
| Dr. Dobb's Compression Resource - http://www.ddj.com/topics/compression/
| Mark Nelson - ma...@ieee.org - http://www.dogma.net/markn
|

Ben Rudiak-Gould

unread,
Aug 19, 2001, 4:39:01 PM8/19/01
to
"Mark Nelson" <ma...@ieee.org> wrote in message news:<W__e7.98547$oh1.36...@news2.rdc2.tx.home.com>...

> Hi Ben,
>
> This is fantastic information which many folks have asked for in the past.
> With your permission, I'd like to save a copy of your post in the Data
> Compression Library. Okay?

Of course. I hope it helps someone recover their data. :-)

-- Ben

Reply all
Reply to author
Forward
0 new messages