I just wanted to share these so others can have a quick start to testing & making use of COLMAP -- especiallly in the case of low-altitude UAS.
18 images were used from a Sensefly eBee with a Canon Powershot S110, 4048 x 3048, 5mm focal length. Images were placed in $DATASET_PATH/img
Processing was done on a Dell Precision 7510, Intel Core i7-6820HQ CPU_2.7GHz with an Nvidia Quadro M2000M GPU running Ubuntu 18.04:
DATASET_PATH=/path/to/data/folder/
colmap feature_extractor --database_path $DATASET_PATH/database.db
--image_path $DATASET_PATH/img --ImageReader.camera_model "RADIAL"
--SiftExtraction.max_image_size 5000
colmap exhaustive_matcher --database_path $DATASET_PATH/database.db
mkdir $DATASET_PATH/sparse
colmap
mapper --database_path $DATASET_PATH/database.db --image_path
$DATASET_PATH/img --output_path $DATASET_PATH/sparse
--Mapper.max_focal_length_ratio 10 --Mapper.max_extra_param 1000000
mkdir $DATASET_PATH/dense
colmap
image_undistorter --image_path $DATASET_PATH/img --input_path
$DATASET_PATH/sparse/0 --output_path $DATASET_PATH/dense --output_type
COLMAP --max_image_size 5000
colmap patch_match_stereo --workspace_path $DATASET_PATH/dense --workspace_format COLMAP --PatchMatchStereo.max_image_size 2000
colmap
stereo_fusion --workspace_path $DATASET_PATH/dense --workspace_format
COLMAP --input_type geometric --output_path
$DATASET_PATH/dense/fused.ply
colmap poisson_mesher --input_path $DATASET_PATH/dense/fused.ply --output_path $DATASET_PATH/dense/meshed-poisson.ply
colmap delaunay_mesher --input_path $DATASET_PATH/dense --output_path $DATASET_PATH/dense/meshed-delaunay.ply