首师大数论组讨论班(2015-12-23)

35 views
Skip to first unread message

SHUN TANG

unread,
Dec 15, 2015, 1:16:30 AM12/15/15
to Celtic Zhang, cnuarith, Derong Qiu, dshwei, gnge, Hui Gao, jiangxue fang, Jinpeng An, kinglaihonkon, kzli, Peng Sun, Ruochuan Liu, Weizhe Zheng, wuke, xufei, yichaot, Yonghui Wang, Zhibin Liang, 孙晟昊, 李克正, 许晨阳, bbyingjin, 张翀, 梁庭嘉, Yongquan Hu, matht...@outlook.com, sy...@math.tsinghua.edu.cn, 张俊, bh...@math.ac.cn
诸位好,本学期首都师范大学第七次数论与代数几何讨论班将于下周举行:

时间:2015年12月23日 周三 上午 10:30--11:30
地点:首都师范大学北二区教学楼513教室(此校区位于西三环紫竹桥南首师大北一区的街对面,走一个过街天桥即到)

报告人:王芝兰 博士中科院数学与系统科学研究院

题目:Tautological integrals on Hilbert schemes of points

摘要:It is an interesting fact that many invariants of the Hilbert schemes of points on a projective variety can be determined explicitly by the corresponding invariants of the variety. In a joint work with Professor Jian Zhouwe extend such results to the (equivariant) Euler characteristics of some naturally defined vector bundles related to the tautological vector bundles on the Hilbert schemes X^{[n]} of points in a projective or quasi-projective variety X. They are related to the Macdonald polynomials. And using these we can calculate the integrals of some chern classes on the Hilbert schemes of points on surfaces. Similar things can be done for Hilbert schemes of points on curves. In this talk, I will begin with the basic facts on Hilbert schemes. Then I will present some examples of the above generating series and briefly explain our strategy to computing this kind of generating series.

请将此信息转发给其他感兴趣的老师和学生,期待与大家相会!

祝好!

唐舜

--
Shun TANG

School of Mathematical Sciences
Capital Normal University
No. 105, West 3rd Ring North Road
100048, Beijing
P. R. China
Reply all
Reply to author
Forward
0 new messages