首都师范大学算术几何讨论班(2017-2-28)

70 views
Skip to first unread message

xu...@math.ac.cn

unread,
Feb 22, 2017, 9:30:52 PM2/22/17
to 唐 舜, cnua...@googlegroups.com, 7713...@qq.com, der...@mail.cnu.edu.cn, dsh...@amss.ac.cn, gn...@zju.edu.cn, mathn...@gmail.com, fangji...@gmail.com, anji...@gmail.com, kingla...@163.com, kz...@ucas.ac.cn, map...@gmail.com, ruoc...@gmail.com, wzh...@math.ac.cn, wu...@cnu.edu.cn, yic...@math.ac.cn, arit...@gmail.com, lian...@gmail.com, sh...@math.tsinghua.edu.cn, kz...@gucas.ac.cn, cy...@math.pku.edu.cn, bbyi...@126.com, zhangc...@163.com, tingch...@gmail.com, yongq...@univ-rennes1.fr, matht...@outlook.com, sy...@math.tsinghua.edu.cn, zhang...@gmail.com, bh...@math.ac.cn, y.d...@imperial.ac.uk, ningxi...@gmail.com, tongj...@tsinghua.org.cn, panxua...@gmail.com, zha...@sdu.edu.cn, lyang...@gmail.com, dtp...@163.com, LIU Chunhui, Enlin...@mathematik.uni-regensburg.de

诸位:


新年好!欢迎参加下周首师大算术几何讨论班。



时间:2017年2月28日(周二)下午 4:30-5:30


地点:首都师范大学校本部新教二楼(数学院新楼)509教室(地铁6号线花园桥站西南出口)


报告人:阳恩林(德国Regensburg大学)



题目:Twist formula for the epsilon factor of a constructible etale sheaf.
摘要: Recently, the singular support and the characteristic cycle of a constructible
sheaf on a smooth  variety over an arbitrary perfect field are constructed by Beilinson and Saito respectively. Based on their theory, we proved a twist formula for the epsilon factor of a constructible sheaf on a projective smooth variety over a finite field in terms of characteristic class of the sheaf. This formula was conjectured by Kato and Saito in 2004.
As a corollary of our formula, we showed that the characteristic classes of 
constructible etale sheaves on projective smooth varieties over a finite field are compatible with proper push-forward. This is a joint work with Naoya Umezaki and Yigeng Zhao.

祝好!

徐飞





xu...@math.ac.cn

unread,
Mar 26, 2017, 11:46:58 PM3/26/17
to 唐 舜, cnua...@googlegroups.com, 7713...@qq.com, der...@mail.cnu.edu.cn, dsh...@amss.ac.cn, gn...@zju.edu.cn, mathn...@gmail.com, fangji...@gmail.com, anji...@gmail.com, kingla...@163.com, kz...@ucas.ac.cn, map...@gmail.com, ruoc...@gmail.com, wzh...@math.ac.cn, wu...@cnu.edu.cn, yic...@math.ac.cn, arit...@gmail.com, lian...@gmail.com, sh...@math.tsinghua.edu.cn, kz...@gucas.ac.cn, cy...@math.pku.edu.cn, bbyi...@126.com, zhangc...@163.com, tingch...@gmail.com, yongq...@univ-rennes1.fr, matht...@outlook.com, sy...@math.tsinghua.edu.cn, zhang...@gmail.com, bh...@math.ac.cn, y.d...@imperial.ac.uk, ningxi...@gmail.com, tongj...@tsinghua.org.cn, panxua...@gmail.com, zha...@sdu.edu.cn, lyang...@gmail.com, dtp...@163.com, LIU Chunhui, Enlin...@mathematik.uni-regensburg.de, cum...@163.com

诸位:
 
本周数论与代数几何讨论班
 

报告人:张磊博士(德国柏林自由大学)

时间:3月30日(星期四)下午4:30-5:30
 
地点:本部新教二楼610教室

题目: The Nori fundamental gerbe

摘要: In the paper "The Nori fundamental gerbe of a fibered category" N. Borne and A. Vistoli generalized the notion of Nori fundamental group on schemes to that of Nori fundamental gerbe on  fibered categories, and they gave a Tannakian interpretation of the fundamental gerbe when the fibered category is pseudo-poper. Here a fibered category X is called  "pseudo-poper" if it is quasi-compact and if the space of global sections of any vector bundle on X is a finite dimensional vector space. This is not a significant generalization if the fibered category is a scheme, but it is so when we consider stacks. In fact this notion includes a large class of extremely important stacks, namely the affine gerbes. In the leture we will first introduce the techniques developped by Borne-Vistoli, then we will introduce a generalization of the Tannakian interpretation to non pseudo-proper fibered categories which is due to Fabio Tonini and me.  In the end we will also introduce a Lange und Stuhler style theorem for algebraic stacks which roughly says that a vector bundle comes from the representation of the fundamental group if and only if it is trivialized by a finite surjective cover. We managed to do this for even non pseudo-proper algebraic stacks.

 
欢迎参加!
 
 
徐飞




xu...@math.ac.cn

unread,
Apr 1, 2017, 1:26:57 AM4/1/17
to 唐 舜, cnua...@googlegroups.com, 7713...@qq.com, der...@mail.cnu.edu.cn, dsh...@amss.ac.cn, gn...@zju.edu.cn, mathn...@gmail.com, fangji...@gmail.com, anji...@gmail.com, kingla...@163.com, kz...@ucas.ac.cn, map...@gmail.com, ruoc...@gmail.com, wzh...@math.ac.cn, wu...@cnu.edu.cn, yic...@math.ac.cn, arit...@gmail.com, lian...@gmail.com, sh...@math.tsinghua.edu.cn, kz...@gucas.ac.cn, cy...@math.pku.edu.cn, bbyi...@126.com, zhangc...@163.com, tingch...@gmail.com, yongq...@univ-rennes1.fr, matht...@outlook.com, sy...@math.tsinghua.edu.cn, zhang...@gmail.com, bh...@math.ac.cn, y.d...@imperial.ac.uk, ningxi...@gmail.com, tongj...@tsinghua.org.cn, panxua...@gmail.com, zha...@sdu.edu.cn, lyang...@gmail.com, dtp...@163.com, LIU Chunhui, Enlin...@mathematik.uni-regensburg.de, cum...@163.com, Meng Chen
诸位:
 
下周数论与代数几何讨论班



报告人:陈猛教授(复旦大学)

时间:4月7日(星期五)下午4:30-5:30

地点:本部新教二楼725教室

题目:  具有较大体积的射影簇的典范稳定性递归猜想
摘要:  设 n 是一个正整数,典范稳定性递归猜想认为:对于体积足够大的 n 维射影簇 X,其典范稳定性指数 r_s(X) 小于或等于第 n-1 个典范稳定性指数 r_{n-1}。在这个报告中,我们介绍当 n 小于或等于 5 时这个猜想的证明方法和其它弱形式。
 
欢迎参加!
 
 
徐飞





Reply all
Reply to author
Forward
0 new messages