ValueError: For subject 109_S_1343 in session ses-M000, an error occurred whilst recentering Nifti image: /Volumes/CrucialX6/SS_ADNI/Clinica/ADNI_T1_FDG_AV45/ADNI/109_S_1343/FDG_Brain_Em_-_Iter_Brain_Mode_/2007-04-24_07_26_33.0/I78559/ADNI_109_S_1343_PET_FDG_Brain_Em_-_Iter_Brain_Mode__br_raw_20071026071616697_S41947_I78559.vThe error is: Cannot work out file type of "/Volumes/CrucialX6/SS_ADNI/Clinica/ADNI_T1_FDG_AV45/ADNI/109_S_1343/FDG_Brain_Em_-_Iter_Brain_Mode_/2007-04-24_07_26_33.0/I78559/ADNI_109_S_1343_PET_FDG_Brain_Em_-_Iter_Brain_Mode__br_raw_20071026071616697_S41947_I78559.v"
Please guide me in resolving this error.
Shahzad Ali | PhD Researcher
--
You received this message because you are subscribed to the Google Groups "Clinica" group.
To unsubscribe from this group and stop receiving emails from it, send an email to clinica-user...@googlegroups.com.
To view this discussion visit https://groups.google.com/d/msgid/clinica-user/CAPaAoQSmd-2jR0Jr1_ytJycgc%3D_fLat%2BtVtw8v1_mPom1je_mw%40mail.gmail.com.
Dear Alice,
Thanks for your response. Here are the details about setup:
(clinicaEnv) shahzadali@Shahzads-MacBook-Pro ~ % conda --version
conda 24.5.0
(clinicaEnv) shahzadali@Shahzads-MacBook-Pro ~ % python --version
Python 3.10.13
(clinicaEnv) shahzadali@Shahzads-MacBook-Pro ~ %
I am using the following command for conversion (converting T1, FDG and AV45 PET scans in clinica from adni-to-bids:):
clinica convert adni-to-bids /Volumes/CrucialX6/SS_ADNI/Clinica/ADNI_T1_FDG_AV45/ADNI
/Volumes/CrucialX6/SS_ADNI/Clinica/ADNI_ClinicalData
/Volumes/CrucialX6/SS_ADNI/Clinica/ADNI_T1_FDG_AV45/BIDS_Converted
ValueError: For subject 109_S_1343 in session ses-M000, an error occurred whilst recentering Nifti image: /Volumes/CrucialX6/SS_ADNI/Clinica/ADNI_T1_FDG_AV45/ADNI/109_S_1343/FDG_Brain_Em_-_Iter_Brain_Mode_/2007-04-24_07_26_33.0/I78559/ADNI_109_S_1343_PET_FDG_Brain_Em_-_Iter_Brain_Mode__br_raw_20071026071616697_S41947_I78559.vThe error is: Cannot work out file type of "/Volumes/CrucialX6/SS_ADNI/Clinica/ADNI_T1_FDG_AV45/ADNI/109_S_1343/FDG_Brain_Em_-_Iter_Brain_Mode_/2007-04-24_07_26_33.0/I78559/ADNI_109_S_1343_PET_FDG_Brain_Em_-_Iter_Brain_Mode__br_raw_20071026071616697_S41947_I78559.v"
Furthermore, I tried to convert individual PET-FDG files using:
clinica convert adni-to-bids /Volumes/CrucialX6/SS_ADNI/Clinica/ADNI_All/PET_FDG /Volumes/CrucialX6/SS_ADNI/Clinica/ADNI_ClinicalData /Volumes/CrucialX6/SS_ADNI/Clinica/ADNI_All/BIDS_Converted/PET_FDG_Converted -m PET_FDG
ValueError: For subject 053_S_7086 in session ses-M000, an error occurred whilst recentering Nifti image: /Volumes/CrucialX6/SS_ADNI/Clinica/ADNI_All/PET_FDG/053_S_7086/ADNI_Brain_PET__Raw/2022-11-07_13_56_57.0/I1639968/ADNI_053_S_7086_PET_ADNI_Brain_PET__Raw_br_raw_20221108141318761_S1174102_I1639968.iThe error is: Cannot work out file type of "/Volumes/CrucialX6/SS_ADNI/Clinica/ADNI_All/PET_FDG/053_S_7086/ADNI_Brain_PET__Raw/2022-11-07_13_56_57.0/I1639968/ADNI_053_S_7086_PET_ADNI_Brain_PET__Raw_br_raw_20221108141318761_S1174102_I1639968.i"
Furthermore, at the end of normal other conversions like fMRI, PET_TAU, PET_AMYLOID, etc. The following warning appears, is this the normal execution?
:162: PerformanceWarning: indexing past lexsort depth may impact performance.
dxsum_df.loc[(alternative_id, "sc"), "DIAGNOSIS"].values[0]
2024-10-31 12:46:46,079:INFO:Creating sessions files...
/Users/shahzadali/miniconda3/envs/clinicaEnv/lib/python3.10/site-packages/clinica/iotools/converters/adni_to_bids/adni_utils.py:208: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
df_subj_sessions["a_stat"] = df_subj_sessions.apply(
/Users/shahzadali/miniconda3/envs/clinicaEnv/lib/python3.10/site-packages/clinica/iotools/converters/adni_to_bids/adni_utils.py:216: PerformanceWarning: DataFrame is highly fragmented. This is usually the result of calling `frame.insert` many times, which has poor performance. Consider joining all columns at once using pd.concat(axis=1) instead. To get a de-fragmented frame, use `newframe = frame.copy()`
df_subj_sessions["tau_stat"] = df_subj_sessions.apply(
Shahzad Ali | PhD Researcher
-----------------------------------------------------------------------
To view this discussion visit https://groups.google.com/d/msgid/clinica-user/CAP_epFsr8VvvxVpJyFKc3TXBJTU2fVNutX0i0TONm7-i9ZVRpA%40mail.gmail.com.
% clinica --version: clinica, version 0.9.1
% python --version: Python 3.10.13