How to find eigenvalus?

26 views
Skip to first unread message

Fun123

unread,
Aug 19, 2023, 10:25:01 PM8/19/23
to chebfun-users
I have the following system of differetial equations, which are linearized based on steady state solutions. How to find eigenvalues by chebfun or any other method? The equations are not written in Matlab.

    (%parameters)
    B=0.11;ita = 1.0;F =0.28;
    (%steady-state solutions)
    v(z)=exp((F/4.0 ita) z);
    a(z) = exp(-(F/4.0 ita) z);
    h(z)= exp(-(F/4.0 ita) z) sqrt(((4.0 B)/F) + (1 - ((4.0 B)/F)) exp((F/4.0 ita)z));
    (%linearized equations)
    eq1=(lambda)a1(z)+ a(z) v1'(z) + a'(z) v1(z)+ v(z) a1'(z)+ v'(z)a1(z)== 0;
    eq2=(lambda) a(z)h1(z) - a(z) h(z) v1'(z)- a(z)v'(z) h1(z) - h(z)v'(z)a1(z) + v(z)h(z)a1'(z) + v(z0 a'(z) h1(z)+ h(z)a'(z)v1(z) + (F/(2.0 *ita)) h1(z) == 0;
    eq3=(lambda) (h[z]^2 a1(z) - 2.0 a(z) h(z) h1(z)) - 2.0  a(z) v(z) h(z) h1'(z) - 2.0  a(z) v(z) h'(z) h1(z)- 2.0  a(z) h(z) h'(z) v1(z) - 2.0  v(z) h(z) h'(z) a1(z) + v(z) h(z)^2 a1'(z)+ 2.0  v(z) a'(z) h(z) h1(z) + h(z)^2 a'(z) v1(z) - ((2.0 *B)/ita)a(z)a1(z) == 0.0;
    (%boundary conditions)
    bc1=a1(0) == 0.0001; bc2=v1(0)== 0.0001; bc3=h1(0) == 0.0001;
   
Here, a(z), v(z), and h(z) are steady-state solutions and a1(z), v1(z) and h1(z) are small perturbations. (lmbda) is the eigenvalues needs to find. The domain for z is [0,10]. Also, here a(0)=h(0)=v(0)=1. Please help, I have very limited knowledge in Matlab. Thanks.
Reply all
Reply to author
Forward
0 new messages