Chainer v6.0.0rc1 をリリースしました!リリースノートは以下の通りです.
v6
branch.CHAINER_DTYPE=mixed16
to make Chainer choose appropriate dtypes for mixed precision training (in most places it is float16
, but it automatically chooses float32
when it’s better for precision and performance reasons).(optimizer).loss_scaling()
. See the documentation for details.variable.item()
(#5797, thanks @crcrpar!)Link.to_device
family (#5986)unit
to CupyMemoryProfileHook.print_report()
(#6256, thanks @hitsgub!)distributions.Independent
(#6324, thanks @ganow!)FloorDivide
(#6350)testing.FunctionTestCase
(#6444)mixed16
mode and its support in L.BatchNormalization
(#6456)F.relu6
as an alias to F.clipped_relu
(#6463, thanks @aksub99!)minimum
to chainerx (#6477, thanks @aksub99!)square
to chainerx (#6486, thanks @aksub99!)chainerx.testing.integral_dtypes
(#6526)chainer.mixed16
data type in PureNcclCommunicator (#6548)LinkTestCase
to simplify link tests (#6559)Sin
and Cos
to chainerx (#6601, thanks @kshitij12345!)MultiNodeBatchNormalization
of ChainerMN (#6619)tan
, arcsin
, arccos
, arctan
to ChainerX (#6703, thanks @IvanYashchuk!)F.resize_images
speed (#5753, thanks @grafi-tt!)F.group_normalization
via cuDNN call (#5924, thanks @grafi-tt!)F.average_pooling_nd
with pad_value
of None (#6332, thanks @crcrpar!)F.log_ndtr
to avoid NaN (#6340)y.grad
on y.backward(retain_grad=False)
(#6348)requires_grad
explicitly in gradient_check
and function test (#6364)get_fans
(#6365)ResultType
to take kind into account (#6419)FunctionTestCase
error message (#6426)Adam
for float16 parameters to float32 (#6442)chainerx.Scalar
(#6481)BatchNorm
and FixedBatchNorm
(#6484)chainerx::Take
indices other dtype than int64 (#6485)cupy.cudnn.batch_normalization_forward_training
(#6497)chainerx::conv
and chainerx::conv_transpose
(#6510)F.cast
(#6518)x.dtype == b.dtype
in F.convolution_nd
and F.deconvolution_nd
(#6524)chainerx.Scalar
to Python (#6535)parameterize_pytest
to allow parameterizing with tuples (#6554)chainerx.linear
(#6569)chainer.grad
(#6580)PerformanceWarning
(#6617)testing.product
(#6635)BatchNormalization
to only allocate dummy mean and var in cuDNN path (#6656)F.layer_normalization
(#6680, thanks @hitsgub!)F.l2_normalization
(#6681, thanks @hitsgub!)D.Normal
(#6709)minimum
and maximum
(#6713)Sequential
(#6304)F.softmax_cross_entropy
float16 under/overflow (#6366)BatchNormalization
link (#6369)str.join
TypeError
in FunctionTestCase
helper (#6370)chainer.links.NStepRNN
and its variants (#6415, thanks @crcrpar!)chainerx::Array
(#6540)chainerx::Slice
(#6557)chainerx::Linear
(#6593, thanks @crcrpar!)DeviceResident.to_gpu
fallback argument (#6712)==
/ !=
to compare str) (#6346)# NOQA
in docstrings (cont.) (#6356)op_utils.py
(#6421)chainerx::Linear
(#6425)ResultTypeResolver
multiple definitions (#6439).clang-tidy
(#6445)AsContiguous
in CudaConv::ConvGradWeight
(#6520)_BNMode
(#6582)collections
(#6645)ArrayBody::GetArrayNode
to return null (#6658)BackwardBuilder::Target
less stateful (#6659)TimerHook
(#6433, thanks @hitsgub!)F.prelu
(#6455, thanks @fiarabbit!)Dot
backward cast (#6537)forward
in LinkHook
documentation (#6546, thanks @crcrpar!)F.rrelu
documentation (#6581, thanks @fiarabbit!)gradient_check.check_double_backward
in reference (#6584):meth:
link (#6603, thanks @23pointsNorth!)chainerx.md
(#6610, thanks @kshitij12345!)F.erfcx
, F.erfcinv
and F.erfinv
(#6618)chainer.backend.get_array_module
documentation (#6663)CMAKE_BUILD_TYPE
(#6664)args.out
in train_cifar_custom_loop.py
(#6378, thanks @crcrpar!)__future__.division
in imagenet example with Python2 (#6462)__future__.division
for Python2 (#6562)F.matmul
instead of F.batch_matmul
in memnn example (#6611)unchain_backward()
in pix2pix example (#6634, thanks @hayato-maki!)mushrooms.csv
(#6693)download.py
(#6694)guides/functions.rst
(#6194)F.swish
test (#6306, thanks @ishanrai05!)F.log_softmax
test (#6320, thanks @ishanrai05!)F.softmax_cross_entropy
test (#6363)F.softmax
test (#6371, thanks @aksub99!)F.flipr
test (#6389, thanks @ishanrai05!)F.flipud
test (#6390, thanks @ishanrai05!)F.moveaxis
test (#6392, thanks @ishanrai05!)F.pad
test (#6393, thanks @ishanrai05!)F.test_squared_difference
test (#6395, thanks @aksub99!)F.minimum
test (#6396, thanks @aksub99!)F.maximum
test (#6400, thanks @aksub99!)F.convolution_2d
and F.convolution_nd
(#6406, thanks @crcrpar!)F.rollaxis
test (#6408, thanks @ishanrai05!)F.vstack
test (#6410, thanks @ishanrai05!)F.transpose
test (#6458, thanks @ishanrai05!)F.tile
test (#6459, thanks @ishanrai05!)F.swapaxes
test (#6460, thanks @ishanrai05!)F.resize_image
test. (#6464, thanks @ishanrai05!)F.expand_dims
test (#6473, thanks @ishanrai05!)F.prod
test (#6479, thanks @aksub99!)F.squeeze
test (#6487, thanks @ishanrai05!)examples/.gitignore
(#6391, thanks @crcrpar!)FunctionTestCase
s (#6416)SPHINXOPTS
env from Makefile (#6417)test_print_report
(#6430)NumpyOpTest
(#6437)F.group_normalization
test (#6468, thanks @crcrpar!)F.pad
test for Python2 (#6478)F.vstack
to a list of ndarrays (#6494, thanks @crcrpar!)OpTest
(#6507)batch_norm
test (#6542)fixed_batch_norm
test (#6558)chainerx.divide
test (#6573)F.einsum
tests (#6588)FunctionTestBase
class attributes (#6599)LinkTestCase
and LinkInitializersTestCase
class attributes (#6600)op_test
decorator remove the previous class (#6602)compute_60
instead of compute_50
to run test on P100 (#6633)BatchNormalizationMultiGpuTest
(#6652)TestConvTranspose
(#6691)F.convolution_nd
test for flake8 (#6711)convolution_nd
function test (#6728)