https://www.mdpi.com/2071-1050/18/1/439
Authors: Diogenis A. Kiziridis, Ilias Karmiris, Dimitrios Fotakis
01 January 2026
Abstract
Effective implementation of silvopastoralism, a key Nature-Based Solution for Europe’s climate goals, is hindered by a lack of decision-support tools clarifying trade-offs between efficiency and extent of carbon sequestration. To address this, we developed a multi-objective scenario analysis (4064 scenarios) to identify optimal strategies for silvopastoral expansion across the EU27 Mediterranean bioregion. We found an inverse relationship defining a clear trade-off: scenarios achieving the highest mean sequestration (up to 2.5 Mg CO2 ha−1 year−1) are spatially limited, whereas those maximising total gains (approaching 107 Mg CO2 year−1 in total) do so by incorporating vast areas, lowering mean rates. This trade-off is formalised by a Pareto front, from which we defined a best-balanced optimal scenario and three policy regimes (conservative, balanced, expansive). Progressing across the front involved shifting from converting primarily shrubby and sparsely vegetated lands to incorporating grasslands and mixed agro-systems. At the NUTS2 level, Spain and Greece emerged as hotspots. Notably, converting arable land was not a primary contributor to carbon gains, as the marginal carbon benefit on these productive soils is lower than on marginal lands due to their higher baseline soil carbon levels, indicating that large-scale implementation can focus on marginal lands to avoid conflicts with food security. While subject to uncertainties of the underlying land-use and carbon models, this analysis demonstrates that our framework enables policymakers to select spatially explicit strategies aligned with specific budget or sequestration goals. These insights can inform CAP eco-schemes and national LULUCF strategies. The resulting maps and code are freely available.
Source: MDPI