https://www.sciencedirect.com/science/article/abs/pii/S2211339825001029
Authors: Tim M Nisbet, Alexander W van der Made
11 October 2025
Abstract
Direct air capture (DAC) is a crucial carbon dioxide removal (CDR) technology for achieving net-zero emissions by balancing atmospheric CO₂ release with removal. It serves two key roles: (a) when integrated with Carbon Capture and Storage (DAC-CCS), it enables permanent CO₂ removal to offset emissions from hard-to-abate sources like aviation; and (b) when combined with Carbon Capture and Utilization (DAC-CCU), it provides non-fossil CO₂ for producing defossilized fuels and zero-carbon chemicals. To fulfill these roles, DAC systems must be scalable and economically viable. While academic studies often focus on assessing sorbent performance under a limited range of weather conditions and for limited periods, we advocate that industrial scale deployment demands DAC systems with additional key features such as low pressure drop, high reliability for long periods (years) in a wide range of weather conditions (temperature, relative humidity), resistance to fouling from particulates in air, and without loss of performance by reingestion of CO2 depleted air. These key features are more commonly addressed in patent literature by companies nearing commercialization rather than in academic publications. Moreover, DAC technologies must be capital-efficient, and use low-cost, recyclable sorbents.
Source: ScienceDirect