Hey there,
i'm training the AlexNet with some little changes to perform a classification and later an object detection on images.
Since i use this net i suffer from the problem that the accuracy stays at 0.5 and the loss at 0.69.
I already googled the problem and have done some of the suggestions, e.g. set bias_filler to 0.5-0.7 instead of 1, shuffle the data again and check wether it is correct or not.
I build the lmdb for training and testing with the convert_imageset from ./build/tools without error with shuffling and resizing.
The net looks like:
layer {
name: "data"
type: "Data"
top: "data"
top: "label"
transform_param {
scale: 0.00392156862745
}
data_param {
source: "/home/rkoch/Bilderkennung/bumper_vs_door/train_lmdb"
batch_size: 200
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
num_output: 32
pad: 2
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.0001
}
bias_filler {
type: "constant"
value: 0
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 3
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
convolution_param {
num_output: 256
kernel_size: 5
weight_filler {
type: "gaussian"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.7
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.5
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
weight_filler {
type: "gaussian"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.5
}
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
weight_filler {
type: "gaussian"
std: 0.1
}
bias_filler {
type: "constant"
value: 0.5
}
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "full6"
type: "InnerProduct"
bottom: "pool5"
top: "full6"
inner_product_param {
num_output: 4096
weight_filler {
type: "gaussian"
std: 0.001
}
bias_filler {
type: "constant"
value: 1
}
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "full6"
top: "full6"
}
layer {
name: "full8"
type: "InnerProduct"
bottom: "full6"
top: "full8"
inner_product_param {
num_output: 1000
weight_filler {
type: "gaussian"
std: 0.01
}
bias_filler {
type: "constant"
value: 0.5
}
}
}
layer {
name: "score"
type: "InnerProduct"
bottom: "full8"
top: "score"
inner_product_param {
num_output: 2
weight_filler {
type: "xavier"
}
}
}
layer {
name: "loss"
type: "SoftmaxWithLoss"
bottom: "score"
bottom: "label"
top: "loss"
}
Can somebody help me with this problem?
Thanks,
Robert