age_net_pretrained='./age_net.caffemodel'age_net_model_file='./deploy_age.prototxt'age_net = caffe.Classifier(age_net_model_file, age_net_pretrained,
channel_swap=(2,1,0),
raw_scale=255,
image_dims=(256, 256))
image1.png 1
image2.png 1
..
image10.png 1
image11.png 2
image12.png 2
...
image100.png 10
name: "CaffeNet"input: "data"input_dim: 1input_dim: 3input_dim: 227input_dim: 227layers { name: "conv1" type: CONVOLUTION bottom: "data" top: "conv1" convolution_param { num_output: 96 kernel_size: 7 stride: 4 }}layers { name: "relu1" type: RELU bottom: "conv1" top: "conv1"}layers { name: "pool1" type: POOLING bottom: "conv1" top: "pool1" pooling_param { pool: MAX kernel_size: 3 stride: 2 }}layers { name: "norm1" type: LRN bottom: "pool1" top: "norm1" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 }}layers { name: "conv2" type: CONVOLUTION bottom: "norm1" top: "conv2" convolution_param { num_output: 256 pad: 2 kernel_size: 5 }}layers { name: "relu2" type: RELU bottom: "conv2" top: "conv2"}layers { name: "pool2" type: POOLING bottom: "conv2" top: "pool2" pooling_param { pool: MAX kernel_size: 3 stride: 2 }}layers { name: "norm2" type: LRN bottom: "pool2" top: "norm2" lrn_param { local_size: 5 alpha: 0.0001 beta: 0.75 }}layers { name: "conv3" type: CONVOLUTION bottom: "norm2" top: "conv3" convolution_param { num_output: 384 pad: 1 kernel_size: 3 }}layers{ name: "relu3" type: RELU bottom: "conv3" top: "conv3"}layers { name: "pool5" type: POOLING bottom: "conv3" top: "pool5" pooling_param { pool: MAX kernel_size: 3 stride: 2 }}layers { name: "fc6" type: INNER_PRODUCT bottom: "pool5" top: "fc6" inner_product_param { num_output: 512 }}layers { name: "relu6" type: RELU bottom: "fc6" top: "fc6"}layers { name: "drop6" type: DROPOUT bottom: "fc6" top: "fc6" dropout_param { dropout_ratio: 0.5 }}layers { name: "fc7" type: INNER_PRODUCT bottom: "fc6" top: "fc7" inner_product_param { num_output: 512 }}layers { name: "relu7" type: RELU bottom: "fc7" top: "fc7"}layers { name: "drop7" type: DROPOUT bottom: "fc7" top: "fc7" dropout_param { dropout_ratio: 0.5 }}layers { name: "fc8" type: INNER_PRODUCT bottom: "fc7" top: "fc8" inner_product_param { num_output: 8 }}layers { name: "prob" type: SOFTMAX bottom: "fc8" top: "prob"}