How to create an caffemodel file from training image and its labeled?

1,192 views
Skip to first unread message

Moon Lee

unread,
Jun 14, 2015, 11:09:03 AM6/14/15
to caffe...@googlegroups.com
Hello all, I am working in age classification based on the opensource at http://www.openu.ac.il/home/hassner/projects/cnn_agegender/
The python code has 
   
age_net_pretrained='./age_net.caffemodel'
age_net_model_file='./deploy_age.prototxt'
age_net = caffe.Classifier(age_net_model_file, age_net_pretrained,
       channel_swap
=(2,1,0),
       raw_scale
=255,
       image_dims
=(256, 256))
In which .prototxt file is shown as below. I remain one file that is ".caffemodel". As the source code, he provided it before. However, I would like to create it again based on my face database. Could you have any tutorial or some way to create it? I assume that I have a folder image that include 100 images and divided belongs to each age groups (1 to 1) such as

image1.png 1
image2.png 1
..
image10.png 1
image11.png 2
image12.png 2
...
image100.png 10

This is prototxt file. Thanks in advance

name: "CaffeNet"
input: "data"
input_dim: 1
input_dim: 3
input_dim: 227
input_dim: 227
layers {
  name: "conv1"
  type: CONVOLUTION
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 96
    kernel_size: 7
    stride: 4
  }
}
layers {
  name: "relu1"
  type: RELU
  bottom: "conv1"
  top: "conv1"
}
layers {
  name: "pool1"
  type: POOLING
  bottom: "conv1"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm1"
  type: LRN
  bottom: "pool1"
  top: "norm1"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv2"
  type: CONVOLUTION
  bottom: "norm1"
  top: "conv2"
  convolution_param {
    num_output: 256
    pad: 2
    kernel_size: 5
  }
}
layers {
  name: "relu2"
  type: RELU
  bottom: "conv2"
  top: "conv2"
}
layers {
  name: "pool2"
  type: POOLING
  bottom: "conv2"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "norm2"
  type: LRN
  bottom: "pool2"
  top: "norm2"
  lrn_param {
    local_size: 5
    alpha: 0.0001
    beta: 0.75
  }
}
layers {
  name: "conv3"
  type: CONVOLUTION
  bottom: "norm2"
  top: "conv3"
  convolution_param {
    num_output: 384
    pad: 1
    kernel_size: 3
  }
}
layers{
  name: "relu3" 
  type: RELU
  bottom: "conv3"
  top: "conv3"
}
layers {
  name: "pool5"
  type: POOLING
  bottom: "conv3"
  top: "pool5"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
  }
}
layers {
  name: "fc6"
  type: INNER_PRODUCT
  bottom: "pool5"
  top: "fc6"
  inner_product_param {
    num_output: 512
  }
}
layers {
  name: "relu6"
  type: RELU
  bottom: "fc6"
  top: "fc6"
}
layers {
  name: "drop6"
  type: DROPOUT
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc7"
  type: INNER_PRODUCT
  bottom: "fc6"
  top: "fc7"
  inner_product_param {
    num_output: 512
  }
}
layers {
  name: "relu7"
  type: RELU
  bottom: "fc7"
  top: "fc7"
}
layers {
  name: "drop7"
  type: DROPOUT
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layers {
  name: "fc8"
  type: INNER_PRODUCT
  bottom: "fc7"
  top: "fc8"
  inner_product_param {
    num_output: 8
  }
}
layers {
  name: "prob"
  type: SOFTMAX
  bottom: "fc8"
  top: "prob"
}



npit

unread,
Jun 15, 2015, 7:58:55 AM6/15/15
to caffe...@googlegroups.com
The .caffemodel is the binary weights file of the network. Perform training and it will be produced.
Follow the tutorial on imagenet on the caffe webpage.
Reply all
Reply to author
Forward
0 new messages