## train.prototxt
layer {
  name: "data"
  type: "ImageData"
  top: "data"
  top: "label"
  transform_param {
    mirror: true
  }
  image_data_param {
    source: "/path/to/train.txt"
    batch_size: 1500
  }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "conv1"
  top: "conv2"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv2"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
    pad: 0
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "pool1"
  top: "conv3"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "conv3"
  top: "conv4"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    stride: 1
    weight_filler {
      type: "gaussian"
      std: 0.01
    }
    bias_filler {
      type: "constant"
      value: 1
    }
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv4"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
    pad: 0
  }
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "pool2"
  top: "fc6"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 256
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "drop1"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc7"
  type: "InnerProduct"
  bottom: "fc6"
  top: "fc7"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 256
    weight_filler {
      type: "gaussian"
      std: 0.005
    }
    bias_filler {
      type: "constant"
      value: 0.1
    }
  }
}
layer {
  name: "drop2"
  type: "Dropout"
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "score"
  type: "InnerProduct"
  bottom: "fc7"
  top: "score"
  param {
    lr_mult: 1
    decay_mult: 1
  }
  param {
    lr_mult: 2
    decay_mult: 0
  }
  inner_product_param {
    num_output: 5
  }
}
layer {
  name: "loss"
  type: "SoftmaxWithLoss"
  bottom: "score"
  bottom: "label"
  top: "loss"
}
layer {
  name: "acc"
  type: "Accuracy"
  bottom: "score"
  bottom: "label"
  top: "acc"
}
layer {
  name: "probs"
  type: "Softmax"
  bottom: "score"
  top: "probs"
}
## deploy.prototxt
layer {
  name: "data"
  type: "Input"
  top: "data"
  input_param { shape: { dim: 1 dim: 3 dim: 33 dim: 33 } }
}
layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu1"
  type: "ReLU"
  bottom: "conv1"
  top: "conv1"
}
layer {
  name: "conv2"
  type: "Convolution"
  bottom: "conv1"
  top: "conv2"
  convolution_param {
    num_output: 64
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu2"
  type: "ReLU"
  bottom: "conv2"
  top: "conv2"
}
layer {
  name: "pool1"
  type: "Pooling"
  bottom: "conv2"
  top: "pool1"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
    pad: 0
  }
}
layer {
  name: "conv3"
  type: "Convolution"
  bottom: "pool1"
  top: "conv3"
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "conv4"
  type: "Convolution"
  bottom: "conv3"
  top: "conv4"
  convolution_param {
    num_output: 128
    pad: 1
    kernel_size: 3
    stride: 1
  }
}
layer {
  name: "relu3"
  type: "ReLU"
  bottom: "conv4"
  top: "conv4"
}
layer {
  name: "pool2"
  type: "Pooling"
  bottom: "conv4"
  top: "pool2"
  pooling_param {
    pool: MAX
    kernel_size: 3
    stride: 2
    pad: 0
  }
}
layer {
  name: "fc6"
  type: "InnerProduct"
  bottom: "pool2"
  top: "fc6"
  inner_product_param {
    num_output: 256
  }
}
layer {
  name: "drop1"
  type: "Dropout"
  bottom: "fc6"
  top: "fc6"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "fc7"
  type: "InnerProduct"
  bottom: "fc6"
  top: "fc7"
  inner_product_param {
    num_output: 256
  }
}
layer {
  name: "drop2"
  type: "Dropout"
  bottom: "fc7"
  top: "fc7"
  dropout_param {
    dropout_ratio: 0.5
  }
}
layer {
  name: "score"
  type: "InnerProduct"
  bottom: "fc7"
  top: "score"
  inner_product_param {
    num_output: 5
  }
}
layer {
  name: "prob"
  type: "Softmax"
  bottom: "score"
  top: "prob"
}
--
You received this message because you are subscribed to the Google Groups "Caffe Users" group.
To unsubscribe from this group and stop receiving emails from it, send an email to caffe-users+unsubscribe@googlegroups.com.
To post to this group, send email to caffe...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/caffe-users/e6f0331d-6af2-4f02-b7ac-e153a8393055%40googlegroups.com.
For more options, visit https://groups.google.com/d/optout.
To unsubscribe from this group and stop receiving emails from it, send an email to caffe-users...@googlegroups.com.