name: "face_detection"
layers{
name: "face_detection"
top: "data"
top: "label"
type: HDF5_DATA
hdf5_data_param{
source: "train"
batch_size:128
}
include{
phase: TRAIN
}
}
layers{
name: "face_detection"
type: HDF5_DATA
top: "data"
top: "label"
hdf5_data_param{
source: "test"
batch_size:128
}
include: {phase: TEST}
}
layers{
bottom:"data"
top:"conv1"
name: "conv1"
type: CONVOLUTION
blobs_lr:1
blobs_lr:2
convolution_param{
num_output:32
kernel_size:3
weight_filler{
type:"gaussian"
std:0.0001
}
bias_filler{
type:"constant"
}
}
}
layers{
name: "relu1"
type: RELU
bottom: "conv1"
top: "conv1"
}
layers{
name: "pool1"
type: POOLING
bottom: "conv1"
top: "pool1"
pooling_param{
pool:MAX
kernel_size: 2
stride: 2
}
}
layers{
name: "conv2"
type: CONVOLUTION
bottom: "pool1"
top: "conv2"
blobs_lr:1
blobs_lr:2
convolution_param{
num_output: 64
kernel_size: 2
weight_filler{
type: "gaussian"
std: 0.01
}
bias_filler{
type:"constant"
}
}
}
layers{
name: "relu2"
bottom:"conv2"
top: "conv2"
type:RELU
}
layers{
name: "pool2"
type: POOLING
bottom: "conv2"
top: "pool2"
pooling_param{
pool:MAX
kernel_size: 2
stride: 2
}
}
layers{
name: "conv3"
bottom:"pool2"
top: "conv3"
type: CONVOLUTION
blobs_lr: 1
blobs_lr: 2
convolution_param{
num_output:128
kernel_size: 2
weight_filler{
type: "gaussian"
std:0.01
}
bias_filler{
type:"constant"
}
}
}
layers{
name: "relu3"
type:RELU
bottom:"conv3"
top: "conv3"
}
layers{
name: "pool3"
type:POOLING
bottom: "conv3"
top: "pool3"
pooling_param{
pool: MAX
kernel_size: 2
stride: 2
}
}
layers{
name: "ip1"
type: INNER_PRODUCT
bottom: "pool3"
top: "ip1"
blobs_lr:1
blobs_lr:2
inner_product_param{
num_output: 500
weight_filler{
type:"gaussian"
std:0.1
}
bias_filler{
type: "constant"
}
}
}
layers{
name: "relu4"
type: RELU
bottom:"ip1"
top:"ip1"
}
layers{
name: "ip2"
type: INNER_PRODUCT
bottom: "ip1"
top: "ip2"
blobs_lr:1
blobs_lr:2
inner_product_param{
num_output: 500
weight_filler{
type:"gaussian"
std: 0.1
}
bias_filler{
type: "constant"
}
}
}
layers{
name:"relu5"
type:RELU
bottom:"ip2"
top: "ip2"
}
layers{
name: "ip3"
type: INNER_PRODUCT
bottom: "ip2"
top: "ip3"
blobs_lr: 1
blobs_lr: 2
inner_product_param{
num_output: 30
weight_filler{
type:"gaussian"
std:0.3
}
bias_filler{
type: "constant"
}
}
}
layers{
name: "loss"
type: EUCLIDEAN_LOSS
bottom:"ip3"
bottom:"label"
}
--
You received this message because you are subscribed to the Google Groups "Caffe Users" group.
To unsubscribe from this group and stop receiving emails from it, send an email to caffe-users...@googlegroups.com.
To post to this group, send email to caffe...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/caffe-users/1504e37c-6831-4fa1-83a0-1c2f5711a7d4%40googlegroups.com.
For more options, visit https://groups.google.com/d/optout.
...