I am using AlexNet model to do regression. I created data using HDF5 format as given on other links.
Now I want to give 10 crops per image along with ImageNet mean file. When we use lmdb format we have the transform_param option to give in train_val.prototxt:
 name: "AlexNet"
layer {
  name: "data"
  type: "Data"
  top: "data"
  top: "label"
  include {
    phase: TRAIN
  }
  transform_param {
    mirror: true
    crop_size: 227
    mean_file: "data/ilsvrc12/imagenet_mean.binaryproto"
  }
  data_param {
    source: "examples/imagenet/ilsvrc12_train_lmdb"
    batch_size: 256
    backend: LMDB
  }
}
However, this option is not defined in HDF5 format. I get the following error while using transform_param in HDF5 layer.
 Check failed: !this->layer_param_.has_transform_param() HDF5Data does not transform data.
*** Check failure stack trace: ***
    @     0x7faf93693daa  (unknown)
    @     0x7faf93693ce4  (unknown)
    @     0x7faf936936e6  (unknown)
    @     0x7faf93696687  (unknown)
    @     0x7faf93da5680  caffe::HDF5DataLayer<>::LayerSetUp()
    @     0x7faf93ceae1c  caffe::Net<>::Init()
    @     0x7faf93cebca5  caffe::Net<>::Net()
    @     0x7faf93cf974a  caffe::Solver<>::InitTrainNet()
    @     0x7faf93cfa84c  caffe::Solver<>::Init()
    @     0x7faf93cfab7a  caffe::Solver<>::Solver()
    @     0x7faf93d0e633  caffe::Creator_SGDSolver<>()
    @           0x40e98e  caffe::SolverRegistry<>::CreateSolver()
    @           0x407b32  train()
    @           0x4059bc  main
    @     0x7faf929a1ec5  (unknown)
    @           0x4060f1  (unknown