I give here more analyses on the Turing machine p3 found by Pavel Kropitz on May 19, 2023, with s(p3) > 10^^10^^10^^3.
I use the analysis by Shawn Ligocki in his blog.
We have, for all n >= 0,
(a) (It's Shawn's Rule 3) ...0(A0) 212 (22)^n 52 5^5 --( 6x4^(n + 6) - 21x2^(n + 6) + 22n + 101)--> ...0(A0) 212 (22)^(6x2^(n + 4) - 4) 52
(b) 00(A0) 212 (22)^n 52 5^2 2000 --(16n + 59)--> 141(H2) 2^(2n + 7)152
So the last two transitions of the computation of p3 on ...0(A0)0... are:
...(A0) 212 (22)^n 52 5^7 2000
--(6x4^(n + 6) - 21x2^(n + 6) + 22n + 101)-->
...(A0) 212 (22)^(6x2^'(n + 4) - 4) 52 5^2 2000
--(16(6x2^(n + 4) - 4) + 59)-->
...0141 (H2) 2^(2(6x2^(n + 4) - 4) + 7) 152
The leading term in s(p3) is 6x4^(n + 6).
We have sigma(p3) = 6x2^(n + 5) + 6.
So s(p3) is approximately (2/3) sigma(p3)^2.