1RB 0LA 1LC 1LF 0LD 0LC 0LE 0LB 1RE 0RA 1RZ 1LD
--
You received this message because you are subscribed to the Google Groups "Busy Beaver Discuss" group.
To unsubscribe from this group and stop receiving emails from it, send an email to busy-beaver-dis...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/busy-beaver-discuss/CADhnJ7CxnteYkHgXx6kWQyDZnNYvUTPb%2BZGQChEx%2Bnw3Rfma7w%40mail.gmail.com.
--
You received this message because you are subscribed to the Google Groups "Busy Beaver Discuss" group.
To unsubscribe from this group and stop receiving emails from it, send an email to busy-beaver-dis...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/busy-beaver-discuss/d33e8c7e-7ece-4abc-86c0-a05922a0c909n%40googlegroups.com.
--
You received this message because you are subscribed to the Google Groups "Busy Beaver Discuss" group.
To unsubscribe from this group and stop receiving emails from it, send an email to busy-beaver-dis...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/busy-beaver-discuss/033e31c5f7f251d24bba0eb9d9a9205a%40fu-solution.com.
0 1 00000000000000000000000000000101 5
1 3 000000000000000000000000100011 35
2 2 0000000000010101100111111110 88574
3 3 10111011100000000011111111 49152255
4 1 111011010101001010000101 15553157
5 3 0110000011100001100011 1587299
6 2 00110110001111011110 222174
7 3 111010100010101111 239791
8 1 0110011011111101 26365
9 3 11000101111111 12671
10 1 001111000101 965
11 3 0010000011 131
12 2 11001110 206
13 3 000111 7
14 1 1001 9
15 0 00 0
16
--
You received this message because you are subscribed to the Google Groups "Busy Beaver Discuss" group.
To unsubscribe from this group and stop receiving emails from it, send an email to busy-beaver-dis...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/busy-beaver-discuss/340dfdb9ad41831adb5489525391b4b9%40fu-solution.com.
(2) Despite the big numbers involved in the computation, it is easy to prove the lower bound on sigma (M).It is sufficent to apply the rules R1, R2, ..., first modulo 2^17.The order of 3 modulo 2^n is 2^(n - 2) if n > 2, so, at each application of a rule, the modulus is divided by 2, until we get a number divisible by 4 and apply rule R0.
k_1 is known modulo 2^12, and the order of 3 modulo 2^n is 2^(n - 2) if n > 2, so 3^(k_1 + 3) is known modulo 2^14 (I guess this is the point where I differ from Shawn)
--
You received this message because you are subscribed to the Google Groups "Busy Beaver Discuss" group.
To unsubscribe from this group and stop receiving emails from it, send an email to busy-beaver-dis...@googlegroups.com.
To view this discussion on the web visit https://groups.google.com/d/msgid/busy-beaver-discuss/60b0e35c-7fc0-4cb0-98b9-2ff39e2eeb1en%40googlegroups.com.
this one looks like a winner :D. i would like to hear the story behind
it.
To view this discussion on the web visit https://groups.google.com/d/msgid/busy-beaver-discuss/6ec0d8d6-4ada-407d-ae73-b4ededb63f31n%40googlegroups.com.