Sorry for being unclear. It is the correlation within the variable that is measured with error. I have tried to include an example below.
#data
d1 <- cbind.data.frame(predictor = c(0.005125100, 0.005435463, 0.021340467, 0.006122980, 0.008509872, 0.009936922),
predictor_se = c(0.002682132, 0.003804434, 0.003118820, 0.002060798, 0.002657896, 0.002432118),
outcome = c(0.026238331, 0.009947423, 0.038082012, 0.006974313, 0.024211767, 0.002802170),
outcome_se = c(0.01271259, 0.01967391, 0.01713570, 0.01199105, 0.01356065, 0.01838512))
rho <- cbind(c(1.00000000, 0.11092781, 0.11570652, -0.21288003, 0.07870986, -0.09393294),
c(0.01636902, 1.00000000, -0.07730337, 0.07658367, -0.04730668, 0.03229659),
c(0.08243997, -0.06467834, 1.00000000, -0.28981654, 0.30530699, -0.13025649),
c(-0.17657762, 0.08264548, -0.32989140, 1.00000000, -0.15878164, 0.46864858),
c(0.06135205, -0.08437681, 0.36126178, -0.12203443, 1.00000000, -0.27311942),
c(-0.09783581, -0.02560804, -0.15168974, 0.45968208, -0.30779561, 1.00000000))
#with brms (not accounting for correlation)
library(brms)
fit1 <- brm(outcome | se(outcome_se, sigma = TRUE) ~ 0 + me(predictor, predictor_se),
data = d1, iter = 1000, chains = 2, cores = 1)
summary(fit1)
#non-bayesian inverse-variance weighted estimate (ignoring correlation)
beta1 <- summary(lm(outcome ~ 0 + predictor, weights = outcome_se^-2, data = d1))$coef[1]
#non-bayesian inverse-variance weighted estimate (accounting for correlation)
Sigma <- d1$outcome_se %o% d1$outcome_se * rho
X1 <- solve(t(chol(Sigma))) %*% d1$predictor
Y1 <- solve(t(chol(Sigma))) %*% d1$outcome
beta2 <- lm(Y1 ~ 0 + X1)$coef[1]
#plot
library(ggplot2)
ggplot(as.data.frame(fit1), aes(bme_mepredictorpredictor_se)) +
geom_histogram() +
geom_vline(xintercept = beta1, col = "red") + # ignoring correlation
geom_vline(xintercept = beta2, col = "green") # accounting for correlation