I'm trying to use the me() function to include predictors with measurement error. When I include this function, I'm getting an error in parsing the Stan model. Here's a simplified version of my model formula with the error message below. I've also tried inputting a vector for the sd instead of the "0.023" and I get the same error. I'd prefer to use a vector if possible since I know the measurement error varies through the data.
SYNTAX ERROR, MESSAGE(S) FROM PARSER:
No matches for:
normal_rng(vector, vector)
Available argument signatures for normal_rng:
normal_rng(real, real)
error in 'model9fbb19cce93c_file9fbb7b8bd6f2' at line 61, column 46
-------------------------------------------------
59: real prior_temp_Intercept = normal_rng(0,5);
60: real prior_bme = normal_rng(0,5);
61: real prior_Xn_1 = normal_rng(Xme_1,noise_1);
^
62: real prior_b_Intercept = prior_temp_Intercept - dot_product(means_X, b);
-------------------------------------------------
Error in stanc(model_code = paste(program, collapse = "\n"), model_name = model_cppname, :
failed to parse Stan model 'file9fbb7b8bd6f2' due to the above error.
R version 3.4.4 (2018-03-15)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS High Sierra 10.13.3