Wireless Bandwidth 20 Vs 40

0 views
Skip to first unread message

Imke

unread,
Aug 3, 2024, 2:54:23 PM8/3/24
to breaksectiper

Improving and managing Wi-Fi performance is important to everyone, from home users to large enterprises. Channel width plays a big role in Wi-Fi performance. Selecting the right width can have a huge impact. Getting it right isn't always straightforward, though. With multiple standards and a variety of tradeoffs, it can be hard to keep up with best practices.

Every wireless environment is different, and you need to tailor your equipment to the conditions. With 2.4 GHz, increasing your channel width often isn't worth it, and you should stick with 20 MHz. Conversely, with 5 GHz, increasing channel width can improve performance, but there are tradeoffs. With 5 GHz, if you don't have to worry about interference and all your client devices support it, go with the highest width available.

For a practical example of how to optimize Wi-Fi, check out how CBT Nuggets trainer Keith Barker uses NetSpot and SweetSpots to examine channels for potential interference, map his coverage, and improve his home wireless network in this video:

Of course, there are plenty of "gotchas," and the rules of thumb above won't always be best for you. Like most things in tech, the right answer to this question depends on context. Let's explore the "why" behind these generalizations to help you gain a better understanding of the topic.

Understanding Wi-Fi bands is vital to understanding when to use 20 MHz versus 40 MHz versus 80 MHz channel widths. It's also an important prerequisite to understanding Wi-Fi channels and channel width.

While 6GHz use cases are beginning to emerge (more on those later), the two main Wi-Fi bands are 2.4 GHz and 5 GHz. These Wi-Fi bands are then split into channels for wireless devices to communicate on.

This is important to understand because overlapping Wi-Fi channels can interfere with one another. With 2.4 GHz Wi-Fi, there are four non-overlapping 20 MHz channels: 1, 6, 11, and 14. Note that due to varying regulations, not all channels are available for use in all locations. For example, only 11 channels are available in the United States.

The 5 GHz Wi-Fi band covers a 150 MHz range from 5.725 GHz to 5.875 GHz. However, an additional range of Unlicensed National Information Infrastructure (UNII) bands widens that range to 750 MHz. Using 20 MHz, there are 24 non-overlapping channels available within the 5 GHz band. Note that this is a generalization, and available channels vary depending on location and channel size.

2.4 GHz is more popular than 5 GHz at the moment, but both are widely used. 2.4 GHz is cheaper to implement than its 5 GHz counterpart, so manufacturers leverage it to save costs. 2.4 GHz has also been widely used for a longer period of time, so more 2.4 GHz devices have been deployed.

Many consumer devices, such as cordless phones and microwaves, use 2.4 GHz frequency bands. As a result, 2.4 GHz bands are more likely to experience interference. The relative abundance of non-overlapping channels on 5 GHz Wi-Fi makes it less susceptible to interference.

5 GHz is faster. 5 GHz Wi-Fi offers faster uploads and downloads than 2.4 GHz. Additionally, 5 GHz benefits from more non-overlapping channels and less interference, which can boost performance advantages. However, 5 GHz isn't as good at going through walls.

For instance, you should use 5 GHz for bandwidth-hungry use cases like online gaming (when a wired connection isn't possible) or high-definition video streaming. But keep your gaming console close to the router.

2.4 GHz goes further. The lower frequency of 2.4 GHz is better at passing through solid objects and can cover a wider range than 5 GHz. For comparison across different Wi-Fi 802.11 standards, here's a breakdown of different 2.4 GHz vs 5 GHz speeds and ranges.

For instance, you should use 2.4 GHz if your Wi-Fi clients and router/access point might be separated by multiple rooms. 2.4 GHz will do a better job of penetrating walls and objects between your Wi-Fi devices.

You can use both. It's also worth keeping in mind that simultaneous dual-band routers can broadcast 2.4 GHz and 5 GHz at the same time. This allows you to use 2.4 GHz for some devices and 5 GHz for others and can provide more flexibility. Additionally, if the 2.4 GHz and 5 GHz networks use the same SSID (service set identifier a.k.a. Wi-Fi network name), wireless devices can automatically connect to their preferred bandwidth. In short: simultaneous dual-band routers and modern smart devices can automatically do a lot of the work for you.

In 2020, the United States Federal Communications Commission (FCC) authorized unlicensed use of the 6 GHz band. This change enables modern Wi-Fi standards to leverage 1.2 GHz of previously unavailable frequencies (5.925 GHz to 7.125 GHz). Largely Wi-Fi 6 was mostly developed before the availability of the additional bands, support for the 6 GHz band begins with Wi-Fi 6E.

In addition to the performance boosts that can come with the additional bands, the new ranges that come with 6GHz are generally less congested than 2.4 and 5 GHz networks. 6 GHz Wi-Fi technology is not yet as common as 5 GHz, and device support is limited. However, we can expect adoption to ramp up in the years to come.

We got an introduction to Wi-Fi channels above. We saw that the 2.4 GHz Wi-Fi band is chopped up into smaller 20 MHz bands for use. These smaller bands are the channels that Wi-Fi devices communicate on. The channel width is simply the frequency range for the channel.

There are downsides to channel bonding. While 40 Mhz might have higher throughput than 20 Mhz, it also reduces the number of non-overlapping channels. This increases the probability of interference. Additionally, not all Wi-Fi client devices support channels other than 20 MHz, so compatibility can be a concern.

A note on marketing lingo and tech talk: 20 MHz Wi-Fi channels are generally referred to as "narrow channels" or "narrow widths." 40, 80, and 160 MHz Wi-Fi channels are labeled "wide channels" or "wide widths."

If you are exploring router specs, studying for a Network+, or trying to determine Wi-Fi compatibility, 802.11 has likely come up. IEEE develops the 802.11 Wi-Fi standards, and these standards dictate what speeds and frequencies are supported.

It is important to note that maximum theoretical speeds are NOT the same as real-world speeds. In other words: With any given Wi-Fi version, you can expect slower actual speeds than the max speeds listed here.

Dual band refers to Wi-Fi routers that support both 2.4 GHz and 5 GHz bands. Using a dual-band router allows you to get the "best of both worlds." Higher speeds and lower interference for 5 GHz devices, and wider range for 2.4 GHz devices. It is very common for modern Wi-Fi routers to support dual-band functionality.

With an understanding of Wi-Fi frequencies and channel bonding, we can now dive into the decision-making process. As we go, remember that a prerequisite for using any particular channel width is device support.

The performance tradeoffs from interference on overlapping channels will likely outweigh the throughput benefits. One possible exception to this rule is remote areas where there are not many other Wi-Fi networks or devices.

Additionally, 2.4 GHz Wi-Fi and 20 MHz channel widths offer the broadest range of client device support. If you need to support legacy devices and Wi-Fi standards like 802.11b or 802.11g, you'll need 2.4 GHz and 20 MHz.

With 5 GHZ, things get a bit less straightforward. There are valid use cases for multiple different Wi-Fi channel widths. The best bandwidth for 5 Ghz is 40 MHz. However, there are other considerations as well.

If you have a 5 GHz router, consider using 20 MHz for maximizing the amount of non-overlapping channels. Regardless of using 2.4 GHz or 5 GHz, 20 MHz leaves you with the largest amount of non-overlapping channels. 20 MHz makes sense for high-density deployments and areas where interference is a major problem.

40 MHz offers more throughput than 20 MHz. It still leaves room for a dozen or so non-overlapping channels. This enables you to improve performance relative to 20 MHz and without risking the interference associated with 80 MHz.

If all your devices support it, and overlapping channels is not an issue, 80 MHz channels leave you with four or five non-overlapping channels. This increases the likelihood for interference. Additionally, clients often need to be very close (< 15 feet) to the Wi-Fi radio to get the most out of 80 MHz.

Conceptually, the takeaway here is that you must strike a balance between compatibility, throughput, and interference. While it seems intuitive that the right answer is always "up the width if you can," it just isn't that simple.

Interference from overlapping channels can wreak havoc on network speeds, so you must account for it. This is particularly important in cities, industrial areas, and large businesses where high levels of wireless traffic are common.

With Wi-Fi 6 and later, 160 MHz can be useful in cases where there is low congestion and the devices in the network support 160 MHz bands. This is particularly true with the addition of the 6 GHz bands in Wi-Fi 6E that enable seven more 160 MHz channels to reduce overlap risk.

For example, some Wi-Fi routers enable automatic detection and use of a channel size based on network conditions. This is usually achieved by selecting "Auto 20/40" or similar option as your channel width. Similarly, with most routers and devices, channel selection can be negotiated automatically. If you're not experiencing issues and aren't looking to optimize performance, sticking with these settings makes sense.

If you are looking to optimize performance, a Wi-Fi network analyzer may help. Wireless network analyzers can help you identify interference on different channels and select the least noisy option. Alternatively, manually switching between channels and observing performance is a less scientific alternative.

When it comes to selecting the right Wi-Fi channel width, every situation is different. By understanding the fundamentals, you can more effectively select a configuration that works best for you. While there are no one-size-fits-all answers to the "20 MHz, 40 MHz, or 80 MHz?" question. However, understanding 2.4 GHz vs 5 GHz frequencies and the tradeoffs between non-overlapping channels and speed goes a long way.

c80f0f1006
Reply all
Reply to author
Forward
0 new messages