14: serialize(data, node$con)
13: sendData.SOCKnode(con, list(type = type, data = value, tag = tag))
12: sendData(con, list(type = type, data = value, tag = tag))
11: postNode(con, "EXEC", list(fun = fun, args = args, return = return,
tag = tag))
10: sendCall(cl[[i]], fun, list(...))
9: clusterCall(cl, workerInit, c.expr, exportenv, pkgname, packages,
attachExportEnv)
8: e$fun(obj, substitute(ex), parent.frame(), e$data)
7: foreach(i = verts, .combine = "c") %d% {
g.sub <- graph_from_adjacency_matrix(A[X[[i]], X[[i]]], mode = "undirected",
weighted = weighted)
efficiency(g.sub, "global", weights = weights)
}
6: efficiency(g, "local", use.parallel = use.parallel, A = Adist)
5: set_brainGraph_attr(x, type, ...)
4: make_brainGraph.igraph(g, atlas, type, level, set.attrs, modality,
weighting, threshold, name, Group, subnet, A = x, ...)
3: make_brainGraph(g, atlas, type, level, set.attrs, modality, weighting,
threshold, name, Group, subnet, A = x, ...)
2: make_brainGraph.matrix(A.norm.sub[[1]][, , 1], atlas = "atlas.own",
modality = modality, weighting = "sld", threshold = thresholds[1],
weighted = TRUE, name = covars.dti$C_ID[1], Group = covars.dti$Group[1])
1: make_brainGraph(A.norm.sub[[1]][, , 1], atlas = "atlas.own",
modality = modality, weighting = "sld", threshold = thresholds[1],
weighted = TRUE, name = covars.dti$C_ID[1], Group = covars.dti$Group[1])