If you include this code, you would get the density of the observed data and the density of 20 posterior draws (randomly selected). Here I wrote it for the 9 variables of the HZ data, and set them in a matrix of plots (this could be done with a loop too)
rand_samp <- sample(1:nrow(psamps), 20)
rand_samp
par(mfrow=c(3,3))
plot(density(HolzingerSwineford1939[,"x1"]),
col="red", lwd=4, ylim=c(0,.6))
for(k in 1:length(rand_samp)){
lines(density(cmns[[k]][[1]][,1]) )
}
plot(density(HolzingerSwineford1939[,"x2"]),
col="red", lwd=4, ylim=c(0,1.05))
for(k in 1:length(rand_samp)){
lines(density(cmns[[k]][[1]][,2]) )
}
plot(density(HolzingerSwineford1939[,"x3"]),
col="red", lwd=4, ylim=c(0,.8))
for(k in 1:length(rand_samp)){
lines(density(cmns[[k]][[1]][,3]) )
}
plot(density(HolzingerSwineford1939[,"x4"]),
col="red", lwd=4, ylim=c(0,.5))
for(k in 1:length(rand_samp)){
lines(density(cmns[[k]][[1]][,4]) )
}
plot(density(HolzingerSwineford1939[,"x5"]),
col="red", lwd=4, ylim=c(0,.5))
for(k in 1:length(rand_samp)){
lines(density(cmns[[k]][[1]][,5]) )
}
plot(density(HolzingerSwineford1939[,"x6"]),
col="red", lwd=4, ylim=c(0,.6))
for(k in 1:length(rand_samp)){
lines(density(cmns[[k]][[1]][,6]) )
}
plot(density(HolzingerSwineford1939[,"x7"]),
col="red", lwd=4, ylim=c(0,1))
for(k in 1:length(rand_samp)){
lines(density(cmns[[k]][[1]][,7]) )
}
plot(density(HolzingerSwineford1939[,"x8"]),
col="red", lwd=4, ylim=c(0,.8))
for(k in 1:length(rand_samp)){
lines(density(cmns[[k]][[1]][,8]) )
}
plot(density(HolzingerSwineford1939[,"x9"]),
col="red", lwd=4, ylim=c(0,.8))
for(k in 1:length(rand_samp)){
lines(density(cmns[[k]][[1]][,9]) )
}
par(mfrow=c(1,1))
![]()