Spatial Learning - BRAIN Initiative - Cancer & Alzheimer's - Cerebellum & Language

0 views
Skip to first unread message

Breedlove, S

unread,
Jan 24, 2026, 7:30:40 AM (11 days ago) Jan 24
to
https://www.quantamagazine.org/how-animals-build-a-sense-of-direction-20260121/ How Animals Build a Sense of Direction By Yasemin Saplakoglu On a remote island in the Indian Ocean, six closely watched bats took to the star-draped skies. As they flew across the seven-acre speck of land, devices implanted in their brains pinged data back to a group of sleepy-eyed neuroscientists monitoring them from below. The researchers were working to understand how these flying mammals, who have brains not unlike our own, develop a sense of direction while navigating a new environment. The research, published in Science, reported that the bats used a network of brain cells (opens a new tab) that informed their sense of direction around the island. Their “internal compass” was tuned by neither the Earth’s magnetic field nor the stars in the sky, but rather by landmarks that informed a mental map of the animal’s environment. These first-ever wild experiments in mammalian mapmaking confirm decades of lab results and support one of two competing theories about how an internal neural compass anchors itself to the environment. “Now we’re understanding a basic principle about how the mammalian brain works” under natural, real-world conditions, said the behavioral neuroscientist Paul Dudchenko (opens a new tab), who studies spatial navigation at the University of Stirling in the United Kingdom and was not involved in the study. “It will be a paper people will be talking about for 50 years.” Follow-up experiments that haven’t yet been published show that other cells critical to navigation encode much more information in the wild than they do in the lab, emphasizing the need to test neurobiological theories in the real world. Neuroscientists believe that a similar internal compass, composed of neurons known as “head direction cells,” might also exist in the human brain — though they haven’t yet been located. If they are someday found, the mechanism could shed light on common sensations such as getting “turned around” and quickly reorienting oneself. It might even explain why some of us are so bad at finding our way. © 2026 Simons Foundation -------------------- https://www.thetransmitter.org/policy/brain-initiative-researchers-dream-big-amid-shifts-in-leadership-funding/ BRAIN Initiative researchers ‘dream big’ amid shifts in leadership, funding By Claudia López Lloreda The U.S. Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative is kicking off a new phase. In a road map published in November, it identified four research priorities for the next decade: integrating its databases, informing precision circuit therapies, understanding human neuroscience and advancing NeuroAI. The plan shows a thoughtful effort to “protect a very important initiative,” says J. Anthony Movshon, professor of neural science and psychology at New York University—at a time when its future seems unsettled. The BRAIN Initiative is co-led by the directors of the National Institute of Mental Health and the National Institute for Neurological Disorders and Stroke. But the NIMH has had an acting director since June 2024. Last month, the Trump administration terminated the initiative’s other co-director—Walter Koroshetz—from his role as director of the National Institute for Neurological Disorders and Stroke. And it is not clear whether the initiative will have sufficient funding or support to undertake this decade-long effort, says Joshua Sanes, professor emeritus of molecular and cellular biology at Harvard University and contributing editor for The Transmitter. “My guess is that if things continue politically the way they’re going now, [these goals] would not be accomplished in the United States in the next 10 years.” Even if the BRAIN Initiative receives the amount of funding it is expecting, many neuroscientists are too busy grappling with the fallout of grant cancellations, hiring freezes and the loss of training programs to think about the future, says Eve Marder, university professor of biology at Brandeis University. “I’m talking to all these people who are struggling to keep their labs open.” “You can have all the dreams in the universe,” but these big-picture speculations, which may require vast resources, are hard to reconcile with the erosion and destruction of academic science and training programs for young investigators, she adds. “It is difficult to look at a 10-year horizon, and [it] may be a waste of time and effort when we don’t know what is happening to science funding in the next year.” © 2026 Simons Foundation -------------------- https://www.nature.com/articles/d41586-026-00222-7 Cancer might protect against Alzheimer’s — this protein helps explain why    Heidi Ledford For decades, researchers have noted that cancer and Alzheimer’s disease are rarely found in the same person, fuelling speculation that one condition might offer some degree of protection from the other. Now, a study in mice provides a possible molecular solution to the medical mystery: a protein produced by cancer cells seems to infiltrate the brain, where it helps to break apart clumps of misfolded proteins that are often associated with Alzheimer’s disease. The study, which was 15 years in the making, was published on 22 January in Cell1 and could help researchers to design drugs to treat Alzheimer’s disease. “They have a piece of the puzzle,” says Donald Weaver, a neurologist and chemist at the Krembil Research Institute at the University of Toronto in Canada, who was not involved in the study. “It’s not the full picture by any stretch of the imagination. But it’s an interesting piece.” Alzheimer’s mystery Weaver has been interested in that puzzle ever since he began his medical training, when a senior pathologist made an offhand comment: “If you see someone with Alzheimer’s disease, they’ve never had cancer.” The remark stuck with Weaver over the years as he diagnosed thousands of people with Alzheimer’s disease. “I can’t remember a single one that has had cancer,” he says. Epidemiological data do not draw such a clear divide, but a 2020 meta-analysis of data from more than 9.6 million people found that cancer diagnosis was associated with an 11% decreased incidence of Alzheimer’s disease2. It has been a difficult relationship to unpick: researchers must control for a variety of external factors. For example, people might die of cancer before they are old enough to develop symptoms of Alzheimer’s disease, and some cancer treatments can cause cognitive difficulties, which could obscure an Alzheimer’s diagnosis. © 2026 Springer Nature Limited -------------------- https://www.sciencenews.org/article/cerebellum-brain-role-language A spot in the base of the brain has a love of language By Laura Sanders The brain’s “little brain” may hold big promise for people with language trouble. Tucked into the base of the brain, the fist-sized cerebellum is most known for its role in movement, posture and coordination. A new study maps the language system in this out-of-the-way place. These results, published January 22 in Neuron, uncover a spot in the cerebellum that shows strong and selective activity for language. The new study is “excellent,” says neurologist and cerebellum researcher Jeremy Schmahmann of Massachusetts General Hospital and Harvard Medical School in Boston. His work and that of others have shown that the cerebellum contributes to language and thinking more generally. The new research scrutinized the cerebellum in detail, “confirming and extending previous observations and contributing to our understanding” of the cerebellum’s activity, he says. Neuroscientist Colton Casto combed through about 15 years of brain scanning data collected by study coauthor Evelina Fedorenko, a cognitive neuroscientist at MIT, and her colleagues. Putting the data all together, the scans of 846 people showed brain activity in four spots in the right side of the cerebellum as people read or listened to a story. Three of these spots were also active when people did other things, such as working out a math problem, or listening to music or watching a movie without words. But one spot was more discerning, says Casto, of MIT and Harvard University. This region didn’t respond to nonverbal movies or math. It also ignored orchestral or jazz music, which, like language, relies on syntax and patterns and sound. Instead, this spot is attuned specifically to words. “You have to be reading or listening to language to fully recruit this region,” Casto says. © Society for Science & the Public 2000–2026. --------------------



Reply all
Reply to author
Forward
0 new messages