Dodging Alzheimer's - Visual Brain - Epigenetic Fitness - Prenatal Language

0 views
Skip to first unread message

Breedlove, S

unread,
Oct 8, 2025, 7:35:53 AM (13 days ago) Oct 8
to
https://www.nytimes.com/2025/10/07/health/alzheimers-gene-mutation.html He Was Expected to Get Alzheimer’s 25 Years Ago. Why Hasn’t He? By Pam Belluck Before dawn on a March morning, Doug Whitney walked into a medical center 2,000 miles from home, about to transform from a mild-mannered, bespectacled retiree into a superhuman research subject. First, a doctor inserted a needle into his back to extract cerebral spinal fluid — “liquid gold,” a research nurse called it for the valuable biological information it contains. Then, the nurse took a sample of his skin cells. After that came an injection of a radioactive tracer followed by a brain scan requiring him to lie still for 30 minutes with a thermoplastic mask over his face. Then, another tracer injection and another brain scan. During his three-day visit to the center, at Washington University School of Medicine in St. Louis, he also had cognitive assessments, neurological evaluations and blood draws that extracted multiple tubes for analysis. For 14 years now, Mr. Whitney has been the one-person focus of exceptionally detailed scientific investigation, for which he travels periodically to St. Louis from his home in Port Orchard, Wash. It is not because he is ill. It is because he was supposed to be ill. Mr. Whitney, 76, is a scientific unicorn with potential to provide answers about one of the world’s most devastating diseases. He has a rare genetic mutation that essentially guaranteed he would develop Alzheimer’s disease in his late 40s or early 50s and would likely die within a decade. His mother and nine of her 13 siblings developed Alzheimer’s and died in the prime of their lives. So did his oldest brother, and other relatives going back generations. It is the largest family in the United States known to have an Alzheimer’s-causing mutation. “Nobody in history had ever dodged that bullet,” Mr. Whitney said.    © 2025 The New York Times Company -------------------- https://aeon.co/essays/dale-purves-the-neuroscientist-who-makes-sense-of-the-brain How can you have a picture of the world when your brain is locked up in your skull? Asif Ghazanfar Picture someone washing their hands. The water running down the drain is a deep red. How you interpret this scene depends on its setting, and your history. If the person is in a gas station bathroom, and you just saw the latest true-crime series, these are the ablutions of a serial killer. If the person is at a kitchen sink, then perhaps they cut themselves while preparing a meal. If the person is in an art studio, you might find resonance with the struggle to get paint off your hands. If you are naive to crime story tropes, cooking or painting, you would have a different interpretation. If you are present, watching someone wash deep red off their hands into a sink, your response depends on even more variables. How we act in the world is also specific to our species; we all live in an ‘umwelt’, or self-centred world, in the words of the philosopher-biologist Jakob von Uexküll (1864-1944). It’s not as simple as just taking in all the sensory information and then making a decision. First, our particular eyes, ears, nose, tongue and skin already filter what we can see, hear, smell, taste and feel. We don’t take in everything. We don’t see ultraviolet light like a bird, we don’t hear infrasound like elephants and baleen whales do. Second, the size and shape of our bodies determine what possible actions we can take. Parkour athletes – those who run, vault, climb and jump in complex urban environments – are remarkable in their skills and daring, but sustain injuries that a cat doing the exact same thing would not. Every animal comes with a unique bag of tricks to exploit their environment; these tricks are also limitations under different conditions. Third, the world, our environment, changes. Seasons change, what animals can eat therefore also changes. If it’s the rainy season, grass will be abundant. The amount of grass determines who is around to eat it and therefore who is around to eat the grass-eaters. Ultimately, the challenge for each of us animals is how to act in this unstable world that we do not fully apprehend with our senses and our body’s limited degrees of freedom. There is a fourth constraint, one that isn’t typically recognised. Most of the time, our intuition tells us that what we are seeing (or hearing or feeling) is an accurate representation of what is out there, and that anyone else would see (or hear or feel) it the same way. But we all know that’s not true and yet are continually surprised by it. It is even more fundamental than that: you know that seemingly basic sensory information that we are able to take in with our eyes and ears? It’s inaccurate. How we perceive elementary colours, ‘red’ for example, always depends on the amount of light, surrounding colours and other factors. In low lighting, the deep red washing down the sink might appear black. A yellow sink will make it look more orange; a blue sink may make it look violet. © Aeon Media Group Ltd. 2012-2025. -------------------- https://www.science.org/content/article/well-exercised-male-mice-appear-pass-fitness-their-male-offspring Well-exercised male mice appear to pass fitness to their male offspring By Zunnash Khan You can inherit a talent for athletics from your parents, but physical fitness—which is determined in large part by exercise and other lifestyle choices—doesn’t seem like it can be inherited. But now, a paper suggests male mice that exercise can pass their newly gained fitness on to male offspring. If the same holds true in humans, the researchers say, fathers could help improve the health of any future children by staying in shape themselves. The study is the latest example of how traits can be passed to the next generation not through the DNA in genes, but via snippets of DNA’s chemical cousin, RNA, packed as cargo into sperm cells and delivered to the embryo. “You’re having the animals exercise and then you’re getting the transmission of the phenotype to the next generation,” says Colin Conine, an epigeneticist at the University of Pennsylvania who was not involved in the work. “I think that’s interesting.” Most heritable traits are passed from parents to their offspring through the DNA in genes. (Inheriting genes for a large lung volume might increase your chances of becoming a runner, for example.) But things you experience or learn—such as the ability to make a soufflé or read Sanskrit—aren’t encoded into genes and can’t be passed on this way. Still, recent advances in biology have shown there’s more to heritability than genes. Some acquired traits can alter the chemical packaging of the DNA and affect the properties of the offspring, a phenomenon known as epigenetics. Recent research has identified so-called microRNAs (miRNAs) in sperm cells as one way epigenetic information can be passed on. For example, scientists have shown that diet, stress, and toxins can have an impact on the embryo through miRNAs. A 2021 paper suggested male mice can confer a susceptibility to depression to their offspring this way. © 2025 American Association for the Advancement of Science. -------------------- https://www.scientificamerican.com/article/babies-brains-recognize-foreign-languages-they-heard-before-birth/ Babies’ Brains Recognize Foreign Languages They Heard before Birth By Meghie Rodrigues Babies start processing language before they are born, a new study suggests. A research team in Montreal has found that newborns who had heard short stories in foreign languages while in the womb process those languages similarly to their native tongue. The study, published in August in Nature Communications Biology, is the first to use brain imaging to show what neuroscientists and psychologists had long suspected. Previous research had shown that fetuses and newborns can recognize familiar voices and rhythms and even that they prefer their native language soon after birth. But these findings come mostly from behavioral cues—sucking patterns, head turns or heart rate changes—rather than direct evidence from the brain. “We cannot say babies ‘learn’ a language prenatally,” says Anne Gallagher, a neuropsychologist at the University of Montreal and senior author of the study. What we can say, she adds, is that neonates develop familiarity with one or more languages during gestation, which shapes their brain networks at birth. The research team recruited 60 people for the experiment, all of them about 35 weeks into their pregnancy. Of those, 39 exposed their fetuses to 10 minutes of prerecorded stories in French (their native language) and another 10 minutes of the same stories in either Hebrew or German at least once every other day until birth. These languages were chosen because their acoustic and phonological properties are very distinctfrom French and from each other, explains co-lead author Andréanne René, a Ph.D. candidate in clinical neuropsychology at the University of Montreal. The other 21 participants were part of the control group; their fetuses were exposed to French in their natural environments, with no special input. © 2025 SCIENTIFIC AMERICAN -------------------- https://www.theguardian.com/science/2025/oct/07/women-carry-a-higher-genetic-risk-of-depression-new-study-says Women carry a higher genetic risk of depression Natasha May Health reporter Women carry a higher genetic risk of depression, a new study has found. Claiming to be the largest genetic study to date on sex differences in major depression, the research published on Wednesday in Nature Communications has found 16 genetic variants linked to depression in women and eight in men. The study, led by Australia’s QIMR Berghofer Medical Research Institute, showed a large proportion of the variants associated with depression were shared between sexes, but there was a “higher burden of genetic risk in females which could be due to female-specific variants”. Dr Brittany Mitchell, a senior researcher at QIMR Berghofer’s genetic epidemiology lab, said “we already know that females are twice as likely to suffer from depression in their lifetime than males”. “And we also know that depression looks very different from one person to another. Until now, there hasn’t been much consistent research to explain why depression affects females and males differently, including the possible role of genetics.” The study acknowledged explanations have been put forward spanning behavioural, environmental and biological domains, including men being less likely to seek help leading to under-diagnosis, and environmental exposures such as women being more frequently exposed to sexual abuse and interpersonal violence. The study stated that together these factors highlight the need for a “multifaceted approach” to understanding the underlying mechanisms of depression but proposed that a “key component of the biological mechanisms underlying these disparities could be differences in genetics”. © 2025 Guardian News & Media Limited --------------------


Reply all
Reply to author
Forward
0 new messages