https://www.quantamagazine.org/the-polyglot-neuroscientist-resolving-how-the-brain-parses-language-20251205/ Polyglot Neuroscientist Resolving How the Brain Parses Language By John Pavlus Even in a world where large language models (LLMs) and AI chatbots are commonplace, it can be hard to fully accept that fluent writing can come from an unthinking machine. That’s because, to many of us, finding the right words is a crucial part of thought — not the outcome of some separate process. But what if our neurobiological reality includes a system that behaves something like an LLM? Long before the rise of ChatGPT, the cognitive neuroscientist Ev Fedorenko (opens a new tab) began studying how language works in the adult human brain. The specialized system she has described, which she calls “the language network,” maps the correspondences between words and their meanings. Her research suggests that, in some ways, we do carry around a biological version of an LLM — that is, a mindless language processor — inside our own brains. “You can think of the language network as a set of pointers,” Fedorenko said. “It’s like a map, and it tells you where in the brain you can find different kinds of meaning. It’s basically a glorified parser that helps us put the pieces together — and then all the thinking and interesting stuff happens outside of [its] boundaries.” Fedorenko has been gathering biological evidence of this language network for the past 15 years in her lab at the Massachusetts Institute of Technology. Unlike a large language model, the human language network doesn’t string words into plausible-sounding patterns with nobody home; instead, it acts as a translator between external perceptions (such as speech, writing and sign language) and representations of meaning encoded in other parts of the brain (including episodic memory and social cognition, which LLMs don’t possess). Nor is the human language network particularly large: If all of its tissue were clumped together, it would be about the size of a strawberry (opens a new tab). But when it is damaged, the effect is profound. An injured language network can result in forms of aphasia (opens a new tab) in which sophisticated cognition remains intact but trapped within a brain unable to express it or distinguish incoming words from others. © 2025 Simons Foundation -------------------- https://www.thetransmitter.org/psychedelics/psilocybin-rewires-specific-mouse-cortical-networks-in-lasting-ways/ Psilocybin rewires specific mouse cortical networks in lasting ways By Siddhant Pusdekar A single dose of psilocybin leads to widespread network-specific changes to cortical circuitry in mice, according to a new study published today in Cell. The results help explain how psilocybin can bring about lasting changes in behavior, and they pinpoint “the neurons that are most affected,” says Andrea Gomez, assistant professor of molecular and cellular biology at the University of California, Berkeley, who was not involved in the study. Specifically, the psychedelic strengthens cortical inputs from sensory brain areas and weakens inputs into cortico-cortical recurrent loops. Overall, these network changes suggest that psychedelics reroute information in a way that enhances responses to the outside world and reduces rumination, says study investigator Alex Kwan, professor of biomedical engineering at Cornell University. “This study provides some more mechanistic insight for why the drug may be a good antidepressant.” And the rewiring itself is not static, Kwan adds: “It can be influenced by manipulating neural activity” during psychedelic treatment. With this locus of psychedelic-induced changes identified, researchers can unpack how these neuronal ensembles coordinate “to create particular percepts or particular cognitions,” Gomez says. Kwan’s team focused on the mouse dorsal medial prefrontal cortex (dmPFC), which includes the anterior cingulate cortex—an important hub for the serotonin receptors that psilocybin targets. One dose of psilocybin increases dendritic spine growth in the medial prefrontal cortex of mice, an effect that lasts for at least a month, according to a 2021 study by Kwan’s team. And the treatment reduces the animals’ learned stress-related behaviors, but only if pyramidal tract neurons—one of the major types of excitatory neurons in the dmPFC—are active, Kwan’s group reported in April. © 2025 Simons Foundation -------------------- https://www.nytimes.com/2025/12/02/science/ozempic-glp1-pets-cats.html Could Weight Loss Drugs Turn Fat Cats Into Svelte Ozempets? By Emily Anthes In just a few short years, new diabetes and weight loss drugs like Ozempic, Wegovy and Mounjaro have taken the world by storm. In the United States, one in eight adults say they’ve tried one of these medications, which are known as GLP-1 drugs, and that number seems sure to rise as prices fall and new oral formulations hit the market. Fluffy and Fido could be next. On Tuesday, Okava Pharmaceuticals, a biopharmaceutical company based in San Francisco, is set to announce that it has officially begun a pilot study of a GLP-1 drug for cats with obesity. The company is testing a novel approach: Instead of receiving weekly injections of the drugs, as has been common in human patients, the cats will get small, injectable implants, slightly larger than a microchip, that will slowly release the drug for as long as six months. “You insert that capsule under the skin, and then you come back six months later, and the cat has lost the weight,” said Dr. Chen Gilor, a veterinarian at the University of Florida, who is leading the study. “It’s like magic.” Results are expected next summer. If they are promising, they could represent the next frontier for a class of drugs that has upended human medicine, and a potentially transformative treatment option for millions of pets. Some veterinarians have already begun administering human GLP-1 drugs, off label, to diabetic cats, and Okava is not the only company developing a product specifically for companion animals. “I think this is going to be the next big thing,” said Dr. Ernie Ward, a veterinarian and the founder of the Association for Pet Obesity Prevention. Veterinarians, he added, are “on the precipice of a complete new era in obesity medicine.” © 2025 The New York Times Company -------------------- https://undark.org/2025/12/05/book-review-nightmare-obscura/ Harnessing the Power of Dreams and Nightmares By Emily Cataneo Imagine having a dream that you are trapped in a room with five rabid tigers. No matter how hard you try, you can’t escape. The tigers are screeching and thrashing and you’re terrified. Now imagine repurposing this dream. Imagine it from the perspective of one of the tigers. Now, you realize that the animals are panicking only because they want to escape. You open the door, inviting them to freedom, and they lie down, docile. Suddenly, the dream has become peaceful and calm, not terrifying and chaotic. BOOK REVIEW — “Nightmare Obscura: A Dream Engineer’s Guide Through the Sleeping Mind,” by Michelle Carr (Henry Holt and Co., 272 pages). Freud might have had a field day with this dream, but thanks in part to psychoanalysis’ fall from grace over the last century, medical professionals no longer put much stock in our minds’ nighttime wanderings as markers of either physical or mental health. That’s what dream scientist Michelle Carr aims to change. Carr, who serves as director of the Dream Engineering Laboratory in the Center for Advanced Research in Sleep Medicine in Montreal, has spent two decades gathering data on people like the tiger dreamer: She’s spent countless nights in labs watching people sleep, probing why we dream, why we have bad dreams, and how studying and even manipulating dreams can improve mental and physical health. In “Nightmare Obscura: A Dream Engineer’s Guide Through the Sleeping Mind,” Carr makes a passionate case for why the answers to these questions matter, deeply, especially for sufferers of trauma and suicidal ideation. What emerges is a passionate case for why dreams and nightmares are not just “random electrophysiological noise produced by the brain during sleep,” as scientists believed for many years, but rather a nightly exercise in “revising the shape of our autobiography.” In other words, Carr argues, our dreamscapes are essential pillars of who we are. -------------------- https://aeon.co/essays/sleep-is-not-just-a-physical-need-but-a-delicious-pleasure Sleep is delicious Sara Protasi I love napping. I love napping in the summer, when rhythms are more relaxed and the guilt of taking a break less intense (if only slightly). But I also love napping in the winter, when it’s cold outside, and burying myself under a warm blanket makes me feel like I’m hibernating. No matter the season, when lying in bed, I luxuriate in the feeling of my body relaxing, waiting for the moment when odd images start forming somewhere in that space between my closed lids and my corneas – or, most likely, somewhere in my mind. I love drifting into unconsciousness without worrying about the next item on my to-do list. I’m not a sound sleeper or someone who falls asleep easily at night, but napping comes easily and sweetly. I treasure the days in which I can nap. And I treasure even more the nights in which I sleep long and well. Yet our culture prizes efficiency and productivity, often seeing sleep as a waste of time. ‘Tech bros’ boast about regularly working more than 70 hours a week, and aim to reduce their sleep time as much as possible. Elon Musk suggested even more intense work schedules for government workers during his time at the US Department of Government Efficiency (DOGE). His approach resonated with many adherents of the Silicon Valley grind culture, which has sought to ‘hack’ sleep for a long time. As one CEO of a cost-cutting firm told the news site Business Insider this year: ‘While a 120-hour workweek isn’t a practical or sustainable solution for most, the principle behind it resonates. Companies that prioritise efficiency, automation and proactive cost management will always outperform those weighed down by bureaucracy.’ This approach is mirrored in a seemingly contradictory trend in the tech industry: a number of years ago, tech companies such as Apple and Google started introducing nap time for their workers. However, this approach was less a gesture of care than a response to exhaustion and sleep deprivation induced by their grind mentality, providing ‘recharging time’ to boost creativity and sustain the long hours required for work. Workers in less high-paying careers, who need to work multiple jobs, rarely have time to nap, and often have to resort to drugs such as modafinil, a stimulant prescribed for narcolepsy and used, often illegally, by students cramming for exams. This substance has gained the attention of the military. The US defence research agency DARPA has funded pharmaceutical companies and researchers to reduce sleep deprivation, with the long-term ambitious goal of operating without any need for sleep in the field. And the US isn’t alone: militaries worldwide are exploring how to keep their soldiers awake and functioning when sleep is in short supply. © Aeon Media Group Ltd. 2012-2025. --------------------