I am running BFD* species delimitation using SNAPP and Beast_2.2.1 (I couldn't get it to work with the more recent Beast... Spits out a bunch of indecipherable java errors) and I am getting in certain runs an infinite likelihood in the std output, which causes a NaN for the final marginal likelihood calculation.
I am new to Beast, but I saw on some other posts (not pertaining to SNAPP/BFD in particular..) that a parameter might end up at a extreme value and cause the likelihood to be calculated incorrectly. Is there a way to prevent/fix this, or is there a way for me to take the marginal likelihoods from the individual "steps" and calculate the final corrected marginal likelihood for the entire model? I've pasted the results from one of my runs below (which was 50k pre-burnin and chainLength=200k, with everything else set as in the BFD tutorial), and as you can see a single step ended up with a weird likelihood, but I have the marginal likelihoods for the rest. If it is a legitimate bug causing the 1 step going weird, how could I go about using the estimates from the other 47 steps?
Thanks you! Any help is much appreciated...
Step theta likelihood contribution ESS
0 1 -9875.485 -683.2539 492.1718
1 0.9308 ∞ � �
2 0.8651 -9881.1415 -617.0052 299.434
3 0.8026 -9884.6487 -585.367 386.5781
4 0.7434 -9888.405 -554.6711 265.5121
5 0.6873 -9892.7571 -524.9368 355.0735
6 0.6343 -9896.1421 -496.0646 224.1079
7 0.5842 -9900.4625 -468.1639 274.6605
8 0.5369 -9905.3879 -441.2018 312.3482
9 0.4924 -9909.3947 -415.0866 452.3919
10 0.4505 -9913.8068 -389.8985 408.0754
11 0.4112 -9918.758 -365.6141 481.9881
12 0.3743 -9923.4008 -342.1997 585.1401
13 0.3398 -9928.6706 -319.6839 405.8054
14 0.3076 -9933.7173 -298.0104 680.4721
15 0.2777 -9939.6619 -277.2363 551.8107
16 0.2498 -9945.9494 -257.2896 564.8967
17 0.2239 -9952.3898 -238.1945 684.692
18 0.2 -9958.8612 -219.9377 801
19 0.1779 -9966.5595 -202.5042 801
20 0.1576 -9974.4838 -185.8901 545.7912
21 0.139 -9982.55 -170.0723 700.6719
22 0.1219 -9991.4183 -155.059 692.2584
23 0.1064 -9999.1669 -140.8064 558.0086
24 0.0923 -10007.2435 -127.3315 635.5343
25 0.0796 -10018.2701 -114.6444 488.8382
26 0.0682 -10027.0119 -102.6872 556.5758
27 0.058 -10037.6866 -91.4797 713.9925
28 0.0488 -10049.5361 -81.0052 545.9281
29 0.0408 -10166.7018 -72.2712 3.1833
30 0.0337 -10093.6102 -62.4352 20.4588
31 0.0275 -10300.0133 -55.6603 4.8865
32 0.0222 -10625.9439 -48.6517 32.686
33 0.0177 -10581.648 -41.0994 8.9432
34 0.0138 -10723.8416 -34.682 360.6881
35 0.0106 -10760.9678 -28.6534 304.4289
36 0.0079 -10806.0258 -23.2654 795.6527
37 0.0058 -10826.0791 -18.4554 758.3903
38 0.004 -10854.2459 -14.2761 801
39 0.0027 -10878.9842 -10.6885 801
40 0.0018 -10890.1844 -7.6666 801
41 0.001 -10902.658 -5.2033 801
42 0.0006 -10910.8742 -3.2667 770.7563
43 0.0003 -10906.5523 -1.824 801
44 0.0001 -10907.1812 -0.8402 738.2622
45 0 -10902.8902 -0.2642 801
46 0 -10910.3519 -0.0291 538.0849
47 0 -10903.2291 0 703.062
marginal L estimate = NaN