Last mail before I could make the corrections, was accidently sent due to some issues with system. I rue for that. I have given below the corrected version of that post.
Thanks to: http://veda.wikidot.com.
This post is just an introduction to one of the greatest astronomer of India Bhaskarachārya! I am in search for his works in detail, will post them here later. I am taking a small step to bring out the works by Indians on field of Astronomy especially solar astronomy.
Life Cycles of the Universe
The Indians view that the Universe has no beginning or end, but follows a cosmic creation and dissolution. Indians are the one who propounds the idea of life-cycles of the universe. It suggests that the universe undergoes an infinite number of deaths and rebirths. Indians views the universe as without a beginning (anadi = beginning-less) or an end (ananta = end-less). Rather the universe is projected in cycles. Hindu scriptures refer to time scales that vary from ordinary earth day and night to the day and night of the Brahma that are a few billion earth years long.
According to Carl Sagan,
"Millenniums before Europeans were willing to divest themselves of the Biblical idea that the world was a few thousand years old, the Mayans were thinking of millions and the Indians billions".
Continues Carl Sagan,
"… is the only religion in which the time scales correspond… to those of modern scientific cosmology."
Its cycles run from our ordinary day and night to a day and night of the Brahma, 8.64 billion years long, longer than the age of the Earth or the Sun and about half the time since the Big Bang". One day of Brahma is worth a thousand of the ages (yuga) known to humankind; as is each night." Thus each kalpa is worth one day in the life of Brahma, the God of creation. In other words, the four ages of the mahayuga must be repeated a thousand times to make a "day to Brahma", a unit of time that is the equivalent of 4.32 billion human years, doubling which one gets 8.64 billion years for a Brahma day and night. This was later theorized (possibly independently) by Aryabhata in the 6th century. The cyclic nature of this analysis suggests a universe that is expanding to be followed by contraction… a cosmos without end. This, according to modern physicists is not impossibility.
Bhaskara II or Bhaskarachārya was an Indian mathematician and astronomer who extended Brahmagupta's work on number systems. He was born near Bijjada Bida (in present day Bijapur district, Karnataka state, South India) into the Deshastha Brahmin family. Bhaskara was head of an astronomical observatory at Ujjain, the leading mathematical centre of ancient India. His predecessors in this post had included both the noted Indian mathematician Brahmagupta (598–c. 665) and Varahamihira. He lived in the Sahyadri region. It has been recorded that his great-great-great-grandfather held a hereditary post as a court scholar, as did his son and other descendants. His father Mahesvara was as an astrologer, who taught him mathematics, which he later passed on to his son Loksamudra. Loksamudra's son helped to set up a school in 1207 for the study of Bhāskara's writings
Bhaskara (1114 – 1185) (also known as Bhaskara II and Bhaskarachārya)
Bhaskaracharya's work in Algebra, Arithmetic and Geometry catapulted him to fame and immortality. His renowned mathematical works called Lilavati" and Bijaganita are considered to be unparalleled and a memorial to his profound intelligence. Its translation in several languages of the world bear testimony to its eminence. In his treatise Siddhant Shiromani he writes on planetary positions, eclipses, cosmography, mathematical techniques and astronomical equipment. In the Surya Siddhant he makes a note on the force of gravity:
"Objects fall on earth due to a force of attraction by the earth. Therefore, the earth, planets, constellations, moon, and sun are held in orbit due to this attraction."
Bhaskaracharya was the first to discover gravity, 500 years before Sir Isaac Newton. He was the champion among mathematicians of ancient and medieval India. His works fired the imagination of Persian and European scholars, who through research on his works earned fame and popularity. Some say Mayans and Chinese too know of gravity some 2000 years before him.
Birth and Education of Bhaskaracharya
Ganesh Daivadnya has bestowed a very apt title on Bhaskaracharya. He has called him ‘Ganakchakrachudamani’, which means, ‘a gem among all the calculators of astronomical phenomena.’ Bhaskaracharya himself has written about his birth, his place of residence, his teacher and his education, in Siddhantashiromani as follows, ‘A place called ‘Vijjadveed’, which is surrounded by Sahyadri ranges, where there are scholars of three Vedas, where all branches of knowledge are studied, and where all kinds of noble people reside, a brahmin called Maheshwar was staying, who was born in Shandilya Gotra (in Hindu religion, Gotra is similar to lineage from a particular person, in this case sage Shandilya), well versed in Shroud (originated from ‘Shut’ or ‘Vedas’) and ‘Smart’ (originated from ‘Smut’) Dharma, respected by all and who was authority in all the branches of knowledge. I acquired knowledge at his feet’.
From this verse it is clear that Bhaskaracharya was a resident of Vijjadveed and his father Maheshwar taught him mathematics and astronomy. Unfortunately today we have no idea where Vijjadveed was located. It is necessary to ardently search this place which was surrounded by the hills of Sahyadri and which was the centre of learning at the time of Bhaskaracharya. He writes about his year of birth as follows,
‘I was born in Shake 1036 (1114 AD) and I wrote Siddhanta Shiromani when I was 36 years old.’
Bhaskaracharya has also written about his education. Looking at the knowledge, which he acquired in a span of 36 years, it seems impossible for any modern student to achieve that feat in his entire life. See what Bhaskaracharya writes about his education,
‘I have studied eight books of grammar, six texts of medicine, six books on logic, five books of mathematics, four Vedas, five books on Bharat Shastras, and two Mimansas’.
Bhaskaracharya calls himself a poet and most probably he was Vedanti, since he has mentioned ‘Parambrahman’ in that verse.
Siddhanta Shriomani
Bhaskaracharya wrote Siddhanta Shiromani in 1150 AD when he was 36 years old. This is a mammoth work containing about 1450 verses. It is divided into four parts, Lilawati, Beejaganit, Ganitadhyaya and Goladhyaya. In fact each part can be considered as separate book. The numbers of verses in each part are as follows, Lilawati has 278, Beejaganit has 213, Ganitadhyaya has 451 and Goladhyaya has 501 verses.
One of the most important characteristic of Siddhanta Shiromani is it consists of simple methods of calculations from Arithmetic to Astronomy. Essential knowledge of ancient Indian Astronomy can be acquired by reading only this book. Siddhanta Shiromani has surpassed all the ancient books on astronomy in India. After Bhaskaracharya nobody could write excellent books on mathematics and astronomy in lucid language in India. In India, Siddhanta works used to give no proofs of any theorem. Bhaskaracharya has also followed the same tradition.
Lilawati is an excellent example of how a difficult subject like mathematics can be written in poetic language. Lilawati has been translated in many languages throughout the world. When British Empire became paramount in India, they established three universities in 1857, at Bombay, Calcutta and Madras. Till then, for about 700 years, mathematics was taught in India from Bhaskaracharya’s Lilawati and Beejaganit. No other textbook has enjoyed such long lifespan.
Bhaskara's contributions to mathematics
Lilawati and Beejaganit together consist of about 500 verses. A few important highlights of Bhaskar's mathematics are as follows:
Terms for numbers
In English, cardinal numbers are only in multiples of 1000. They have terms such as thousand, million, billion, trillion, quadrillion etc. Most of these have been named recently. However, Bhaskaracharya has given the terms for numbers in multiples of ten and he says that these terms were coined by ancients for the sake of positional values. Bhaskar's terms for numbers are as follows:
eka(1), dasha(10), shata(100), sahastra(1000), ayuta(10,000), laksha(100,000), prayuta (1,000,000=million), koti(107), arbuda(108), abja(109=billion), kharva (1010), nikharva (1011), mahapadma (1012=trillion), shanku(1013), jaladhi(1014), antya(1015=quadrillion), Madhya (1016) and parardha(1017).
Kuttak
Kuttak is nothing but the modern indeterminate equation of first order. The method of solution of such equations was called as ‘pulveriser’ in the western world. Kuttak means to crush to fine particles or to pulverize. There are many kinds of Kuttaks. Let us consider one example.
In the equation, ax + b = CY, a and b are known positive integers. We want to also find out the values of x and y in integers. A particular example is, 100x +90 = 63y
Bhaskaracharya gives the solution of this example as, x = 18, 81, 144, 207… And y=30, 130, 230, 330…
Indian Astronomers used such kinds of equations to solve astronomical problems. It is not easy to find solutions of these equations but Bhaskara has given a generalized solution to get multiple answers.
Chakrawaal
Chakrawaal is the “indeterminate equation of second order” in western mathematics. This type of equation is also called Pell’s equation. Though the equation is recognized by his name Pell had never solved the equation. Much before Pell, the equation was solved by an ancient and eminent Indian mathematician, Brahmagupta (628 AD). The solution is given in his Brahmasphutasiddhanta. Bhaskara modified the method and gave a general solution of this equation. For example, consider the equation 61x2 + 1 = y2. Bhaskara gives the values of x = 22615398 and y = 1766319049
There is an interesting history behind this very equation. The Famous French mathematician Pierre de Fermat (1601-1664) asked his friend Bessy to solve this very equation. Bessy used to solve the problems in his head like present day Shakuntaladevi. Bessy failed to solve the problem. After about 100 years another famous French mathematician solved this problem. But his method is lengthy and could find a particular solution only, while Bhaskara gave the solution for five cases. In his book ‘History of mathematics’, see what Carl Boyer says about this equation,
‘In connection with the Pell’s equation ax2 + 1 = y2, Bhaskara gave particular solutions for five cases, a = 8, 11, 32, 61, and 67, for 61x2 + 1 = y2, for example he gave the solutions, x = 226153980 and y = 1766319049, this is an impressive feat in calculations and its verifications alone will tax the efforts of the reader’
Henceforth the so-called Pell’s equation should be recognized as ‘Brahmagupta-Bhaskaracharya equation’.
Simple mathematical methods
Bhaskara has given simple methods to find the squares, square roots, cube, and cube roots of big numbers. He has proved the Pythagoras theorem in only two lines. The famous Pascal Triangle was Bhaskara’s ‘Khandameru’. Bhaskara has given problems on that number triangle. Pascal was born 500 years after Bhaskara. Several problems on permutations and combinations are given in Lilawati. Bhaskar. He has called the method ‘ankapaash’. Bhaskara has given an approximate value of PI as 22/7 and more accurate value as 3.1416. He knew the concept of infinity and called it as ‘khahar rashi’, which means ‘anant’. It seems that Bhaskara had not notions about calculus, One of his equations in modern notation can be written as, d (sin (w)) = cos (w) dw.
A Summary of Bhaskara's contributions
A proof of the Pythagorean Theorem by calculating the same area in two different ways and then canceling out terms to get a² + b² = c².
In Lilavati, solutions of quadratic, cubic and quartic indeterminate equations.
Solutions of indeterminate quadratic equations (of the type ax² + b = y²).
Integer solutions of linear and quadratic indeterminate equations (Kuttaka). The rules he gives are (in effect) the same as those given by the Renaissance European mathematicians of the 17th century
A cyclic Chakravala method for solving indeterminate equations of the form ax² + bx + c = y. The solution to this equation was traditionally attributed to William Brouncker in 1657, though his method was more difficult than the chakravala method.
His method for finding the solutions of the problem x² − ny² = 1 (so-called "Pell's equation") is of considerable interest and importance.
Solutions of Diophantine equations of the second order, such as 61x² + 1 = y². This very equation was posed as a problem in 1657 by the French mathematician Pierre de Fermat, but its solution was unknown in Europe until the time of Euler in the 18th century.
Solved quadratic equations with more than one unknown, and found negative and irrational solutions.
Preliminary concept of mathematical analysis.
Preliminary concept of infinitesimal calculus, along with notable contributions towards integral calculus.
Conceived differential calculus, after discovering the derivative and differential coefficient.
Stated Rolle's theorem, a special case of one of the most important theorems in analysis, the mean value theorem. Traces of the general mean value theorem are also found in his works.
Calculated the derivatives of trigonometric functions and formulae. (See Calculus section below.)
In Siddhanta Shiromani, Bhaskara developed spherical trigonometry along with a number of other trigonometric results.
Arithmetic
Using an astronomical model developed by Brahmagupta in the 7th century, Bhaskara accurately defined many astronomical quantities, including, for example, the length of the sidereal year, the time that is required for the Earth to orbit the Sun, as 365.2588 days which is same as in Suryasiddhanta. The modern accepted measurement is 365.2563 days; it means that Bhaskaracharya was off by only 0.0002%.
Earth’s atmosphere extends to 96 kilometres and has seven parts. There is a vacuum beyond the Earth’s atmosphere.
He had knowledge of precession of equinoxes. He took the value of its shift from the first point of Aries as 11 degrees. However, at that time it was about 12 degrees.
Ancient Indian Astronomers used to define a reference point called ‘Lanka’. It was defined as the point of intersection of the longitude passing through Ujjaini and the equator of the Earth. Bhaskara has considered three cardinal places with reference to Lanka, the Yavakoti at 90 degrees east of Lanka, the Romak at 90 degrees west of Lanka and Siddhapoor at 180 degrees from Lanka. He then accurately suggested that, when there is a noon at Lanka, there should be sunset at Yavkoti and sunrise at Romak and midnight at Siddhapoor.
Bhaskaracharya had accurately calculated apparent orbital periods of the Sun and orbital periods of Mercury, Venus, and Mars. There is slight difference between the orbital periods he calculated for Jupiter and Saturn and the corresponding modern values.
Engineering
The earliest reference to a perpetual motion machine date back to 1150, when Bhāskara II described a wheel that he claimed would run forever.
Bhāskara II used a measuring device known as Yasti-yantra. This device could vary from a simple stick to V-shaped staffs designed specifically for determining angles with the help of a calibrated scale.
References
Pingree, David Edwin. Census of the Exact Sciences in Sanskrit. Volume 146. American Philosophical Society, 1970. ISBN 9780871691460
BHASKARACHARYA, Written by Prof. Mohan Apte
Disavowal: I have merely reproduced the
content of previous works by people on this subject in a lust to get it to many.
Genuineness or question of correctness to be discussed with reference book authors.
I have tried to correct maximum I can. If any mistakes are there, kindly ignore
those mistakes as some times mistakes will enshroud from eyes!
--
You received this message because you are subscribed to the "The Bangalore Astronomical Society" mailing list.
To post to this group, send email to b-...@googlegroups.com
To unsubscribe from this group, send email to b-a-s-un...@googlegroups.com
For more options, visit this group at http://groups-beta.google.com/group/b-a-s?hl=en
News - http://www.bas.org.in/
Events - http://www.bas.org.in/Home/events_calendar
24X7 Chat on IRC - http://www.bas.org.in/Home/irc (#b-a-s on freenode)