Google Groups no longer supports new Usenet posts or subscriptions. Historical content remains viewable.
Dismiss

Online Textbooks For Download Storm Surge- Part

5 views
Skip to first unread message

Baldovino Caya

unread,
Dec 2, 2023, 11:57:49 PM12/2/23
to
Recently, a number of studies evaluated the potential dynamics of future extreme storm surge levels (SSL) in view of climate change. In particular, regional projections of SSL have been generated along the Mediterranean (Conte and Lionello 2013; Jordà et al. 2012; Marcos et al. 2011), North Sea (Debernard and Røed 2008; Gaslikova et al. 2013; Howard et al. 2010; Woth et al. 2006), as well as the Atlantic coast of Europe (Lowe et al. 2001, 2009, 2010; Marcos et al. 2012) and Baltic Sea (Gräwe and Burchard 2012; Meier 2006; Meier et al. 2004) (Table 1).

The North Sea was projected to experience increased storm surge activity (Fig. 8h), especially towards the end of the century, i.e. the present 100-year event was projected to occur every 80.2 and 81.3 years under RCP4.52100 and RCP8.52100, respectively. The relative change in extreme SSL was shown to increase eastwards, as most of the UK east coast showed small decrease or no change (Fig. 7). Strong projected increase in frequency was also observed for the Baltic Sea, for all scenarios apart from RCP4.52040; with the present day 100-year event projected to take place every 44, 72, and 51 years under RCP8.52040, RCP4.52100, and RCP8.52100, respectively (Fig. 8i). Finally an increase in storm surge intensity was projected for the Norwegian Sea for all RCPs, with the present day 100-year event projected to take place every 79.4, 51, 63.5, and 47.7 years under RCP4.52040,RCP8.52040, RCP4.52100, and RCP8.52100, respectively (Fig. 8j).

Online textbooks for download Storm Surge- Part
Download https://0incelvurku.blogspot.com/?qn=2wHHTV



Regarding point C, recent efforts to simulate extreme storm surge events along large domains, such as the Mediterranean Sea, have shown that models often underestimate the extremes and in particular the ones related to short duration/high energy events (Calafat et al. 2014; Conte and Lionello 2013); something that could also apply for some locations at the present study. The latter might be related to processes which take place in finer temporal and spatial scales than the ones presently considered, where the quality of the output is directly affected by the resolution of both the meteorological (Cavaleri and Bertotti 2004) and ocean model (Cid et al. 2014). For example, it has been shown that along shallow areas storm surge is practically wind driven and detailed representation of the wind field is important; for that reason many regional/local scale studies apply a downscaling of the wind/pressure input using a finer atmospheric model (see Table 1 and references therein); which was not feasible in the present case due to the size of the computational domain and the related computational cost. Overall the approach followed appears to be valid since model validation showed that the model could reproduce satisfactorily the measured SSL, and the RMSE errors were at similar levels with previous efforts (Cid et al. 2014). This is also in agreement to previous studies which have demonstrated that global driven simulations are capable of predicting changes in extreme SSL without previous downscaling (Howard et al. 2010).

Given that there are limited, if any, sources of information on storm surge projections along the Norwegian Sea, the present projections can be compared mostly with observations based on historical data. The results obtained project small or no increase in SSL, and when there is it is mostly restricted to the summer and autumn values for most scenarios (Fig. 10). This is partially contradicting with the findings of Menéndez and Woodworth (2010) who found a statistically significant increase for the historical data for both the total water level and the SSL. Overall the Norwegian coastline appears to be at low-risk in terms of coastal inundation as it is characterized by (1) a steep topography, providing a natural protection against increased water levels; and (2) sophisticated coastal protection schemes for low-lying areas of high socio-economic value; e.g. port facilities.

The North Sea is an area subject to some of the highest SSL in Europe (Fig. 7), with the projections indicating a future increase in the extremes, especially along the eastern part. The latter is in agreement with previous projections based on SRES scenarios (Debernard and Røed 2008; Woth et al. 2006), which also indicated an increase in strong westerly winds (Gaslikova et al. 2013), but also of the inter-annual variability (Dangendorf et al. 2014b). Furthermore, previous studies report results relatively similar to the present patterns along the south east coast of UK, i.e. small, or no projected storm surge change (Debernard and Røed 2008; Gaslikova et al. 2013; Howard et al. 2014; Lowe et al. 2009; Woth et al. 2006); as well as along the Dutch coast (Howard et al. 2014; Sterl et al. 2009).

The National Weather Service at Newport/Morehead City's local statement for Tropical Storm Ian says to expect 25-35 mph winds with gusts up to 50 mph; the potential for storm surge 2-4 feet above ground somewhere within surge-prone areas; and 4-8 inches of rain, with locally higher amounts. These conditions are expected to persist into the weekend.

We also observed four comparable broad categories in the footprints of the skew surge events and corresponding similarities in the tracks of their driving storms (Supplementary Figs 5 and 6). What is striking, however, is that the storms that generated the skew surge events follow a much tighter path across the UK (Supplementary Fig. 7). The location of the storm centre, at the time of maximum skew surge, is also closer to the UK (Supplementary Fig. 4b), particularly for sites on the south and west coasts. This again emphasises that extreme sea level events are mostly generated by moderate rather than extreme skew surges, combined with larger astronomical tides.

But what if Irma had stayed its course? As seas rise, storm surge projections modeled by the National Hurricane Center suggest the scenario Haus feared could become dramatically worse. It's a particularly urgent threat for the low-lying southern end of the county, where fast-growing suburbs are squeezed between two national parks and a shrinking farming community.

The tiny village of Cutler Bay would be one of the many places to bear the full brunt of the surge. Just this past June, flooding from what would become the first named storm of this year's hurricane season submerged parts of the town, including Craig Emmanuel's street.

Superstorm Sandy slammed 35 public housing developments managed by the New York City Housing Administration (NYCHA), leaving tens of thousands of low-income New Yorkers without power. Other types of affordable housing were hit hard, too: about 24,000 apartments were in the path of the storm surge, according to data from New York University's Furman Center.



Future storms, coupled with sea level rise from climate change, will flood even more low-income New Yorkers' apartments, exacerbating an ongoing affordable housing crisis. An NPR analysis of data from the National Hurricane Center (NHC) predicts that a Sandy-like storm could flood more than 50 NYCHA developments by 2080.

Advocates and environmental experts are urging the city, state and federal government to prepare its housing stock for coming storms. Some are calling for building upgrades, so New Yorkers aren't trapped in powerless, hazardous apartments and houses the next time the storms arrive. Others say the time to depart is now.

In our study, we conducted a tsunami-deposit survey at Sekinehama on the north coast of the Shimokita Peninsula in the northernmost part of the Pacific Coast of the Tohoku region (Fig. 1) to provide continuous and long-term tsunami history and fill in blank areas of tsunami-deposit information near the junction of the Japan and Kuril trenches. The multiple event deposits that we identified in the Holocene sediments and dated as from 6 ka or later are considered to be transported by tsunamis and storm surges. This study is in coordination with Sato et al. (in press in this special issue), who investigated the wave source of the latest tsunami deposit discussed in our study.

Candidates for tsunami deposits in SKN-W are SKN-W-E3/E4, SKN-W-E10, SKN-W-E11, and SKN-W-E14 because all of them have erosional contacts at the base and are distinct sand layers compared to the other event deposits (Table 2). In contrast, SKN-W-E1 and SKN-W-E8 characteristically exhibit thicker layers and parallel laminae. These features are commonly observed in washover deposits caused by storm surges behind the coast (e.g., Morton et al. 2007). Additionally, SKN-W-E1 is distributed up to the ground surface (Fig. 4). Considering the most recent topographic changes (Fig. 10a, b), it could be a washover deposit formed by a storm surge that eroded the coastal sand dune in the past 50 years. In SKN-E, SKN-E-E5, SKN-E-E6, and SKN-E-E8 are candidates for tsunami deposits because all of them have erosive contact at the base with rip-up clasts. The rip-up clast is often used as one of the indicators for identifying tsunami deposits (e.g., Goff et al. 2012) and for distinguishing tsunami and storm-surge deposits (e.g., Kortekaas and Dawson 2007). SKN-E-E5 in particular includes a few centimeters of gravels and pumice clasts, suggesting a stronger flow compared to other event deposits in the outcrop. SKN-E-E7 is a channel-fill deposit with parallel laminae. Taking into account the paleogeography (Fig. 10c), it could be fluvial sediments that buried the creek flowing through the wetland or tidal-channel sediments that filled the channel connecting to the sea.

Reserve your Birthday Party at our Trampoline Park by booking online in advance with Surge Winston-Salem online reservations. Surge Winston-Salem, NC offers a variety of birthday party ideas and private party options.

Hurricanes are more complicated than they appear on the radar image of a weather report. Air rushes around as if on a carousel, while at the same time moving inwards at the bottom of the storm and outwards at the top. Hot, wet air is constantly rising, and cool, dry air is constantly sinking. All the while, the entire system is moving across the surface of the Earth. Scientists who study hurricanes use esoteric terminology to describe the way they move them, speaking of things like deep moist convection, inertia-gravity waves, and vorticity. But, broadly speaking, a hurricane has only four main parts: the eye, the eyewall, the rainbands, and the cloud cover.
eebf2c3492
0 new messages