Hi Ivan,
Could you be a little more specific about the errors you are seeing, which files you tried, and what code you are using to read the features?
I just tried downloading the features and I can see the features when I read the files directly in Python. Labels and times look OK. Sample session below.
Manoj
code:
import tensorflow as tf
raw_ds = tf.data.TFRecordDataset('audioset_v1_embeddings/unbal_train/oL.tfrecord')
for raw_rec in raw_ds.take(10):
ex = tf.train.SequenceExample()
ex.ParseFromString(raw_rec.numpy())
print(ex.context) # should print video_id, labels, start/end times
print(list(ex.feature_lists.feature_list)) # should print 'audio_embedding'
print(list(map(hex, ex.feature_lists.feature_list['audio_embedding'].feature[0].bytes_list.value[0]))) # print first 128-d embedding
output:
1507
feature {
key: "video_id"
value {
bytes_list {
value: "oLF_1sIOAf8"
}
}
}
feature {
key: "start_time_seconds"
value {
float_list {
value: 400
}
}
}
feature {
key: "labels"
value {
int64_list {
value: 137
}
}
}
feature {
key: "end_time_seconds"
value {
float_list {
value: 410
}
}
}
['audio_embedding']
['0xa6', '0x48', '0x57', '0x68', '0xb9', '0x3e', '0x6c', '0x6b', '0x91', '0xbe', '0x7e', '0xb7', '0x66', '0x78', '0x8c', '0x37', '0xb7', '0x55', '0x5a', '0x86', '0x76', '0x27', '0xaf', '0x65', '0x7f', '0x6e', '0xdb', '0xf5', '0x57', '0xbb', '0x15', '0x22', '0x56', '0x66', '0xcc', '0xb9', '0x
32', '0x72', '0x45', '0xa2', '0x76', '0x46', '0x7b', '0x85', '0xb0', '0xb7', '0x87', '0x8c', '0x9b', '0x9d', '0x80', '0xcf', '0x59', '0xac', '0xef', '0x76', '0xf1', '0x2c', '0x7e', '0x9e', '0x53', '0xab', '0x0', '0x2c', '0x70', '0x89', '0x64', '0xb9', '0xb4', '0x52', '0xcd', '0x53', '0xb3',
'0xa4', '0x2e', '0x71', '0x7e', '0x6c', '0x67', '0x46', '0x8e', '0x87', '0x7f', '0x8e', '0xad', '0xa7', '0x53', '0x63', '0x99', '0x37', '0x51', '0x95', '0x8b', '0xbf', '0x48', '0x62', '0xd6', '0x50', '0xa5', '0x1f', '0xb8', '0xa2', '0x48', '0x50', '0x4d', '0xe2', '0x4f', '0x32', '0xb6', '0x2
d', '0x50', '0x64', '0x50', '0x26', '0x91', '0x69', '0xcb', '0x4d', '0x65', '0x98', '0x93', '0xaa', '0x44', '0xee', '0x7e', '0x52', '0xb5', '0x8c']
1507
feature {
key: "video_id"
value {
bytes_list {
value: "oLIRBB_Y0Ao"
}
}
}
feature {
key: "start_time_seconds"
value {
float_list {
value: 30
}
}
}
feature {
key: "labels"
value {
int64_list {
value: 137
}
}
}
feature {
key: "end_time_seconds"
value {
float_list {
value: 40
}
}
}
['audio_embedding']
['0xa6', '0x48', '0x57', '0x68', '0xb9', '0x3e', '0x6c', '0x6b', '0x91', '0xbe', '0x7e', '0xb7', '0x66', '0x78', '0x8c', '0x37', '0xb7', '0x55', '0x5a', '0x86', '0x76', '0x27', '0xaf', '0x65', '0x7f', '0x6e', '0xdb', '0xf5', '0x57', '0xbb', '0x15', '0x22', '0x56', '0x66', '0xcc', '0xb9', '0x
32', '0x72', '0x45', '0xa2', '0x76', '0x46', '0x7b', '0x85', '0xb0', '0xb7', '0x87', '0x8c', '0x9b', '0x9d', '0x80', '0xcf', '0x59', '0xac', '0xef', '0x76', '0xf1', '0x2c', '0x7e', '0x9e', '0x53', '0xab', '0x0', '0x2c', '0x70', '0x89', '0x64', '0xb9', '0xb4', '0x52', '0xcd', '0x53', '0xb3',
'0xa4', '0x2e', '0x71', '0x7e', '0x6c', '0x67', '0x46', '0x8e', '0x87', '0x7f', '0x8e', '0xad', '0xa7', '0x53', '0x63', '0x99', '0x37', '0x51', '0x95', '0x8b', '0xbf', '0x48', '0x62', '0xd6', '0x50', '0xa5', '0x1f', '0xb8', '0xa2', '0x48', '0x50', '0x4d', '0xe2', '0x4f', '0x32', '0xb6', '0x2
d', '0x50', '0x64', '0x50', '0x26', '0x91', '0x69', '0xcb', '0x4d', '0x65', '0x98', '0x93', '0xaa', '0x44', '0xee', '0x7e', '0x52', '0xb5', '0x8c']
...