Hi,
My aster model contains the following predictors right now: latitude, longitude, trt, col, edge and all two-way interactions. Here is my current model, whereby clusters_art is my artifice:
clusters.2.aster.1 <- aster(resp~ varb + clusters_art:(Col + Edge + Latitude + Trt + Longitude.Latitude*Longitude.Category + Latitude*Trt + Longitude.Category*Trt), pred1, fam1, varb, id, root, data = reshape.precip)
I would like to fit the quadratic terms with Latitude (i.e, Latitude^2 and Latitude^2 * Trt), but not sure of the syntax.
I tried the following model with all factors , but it wouldn't converge (i.e. couldn't compute standard error):
clusters.2.aster.1.quad <- aster(resp~ varb + clusters_art:(Col + Edge + Latitude + Longitude.Category + Trt + I(Latitude^2) + Latitude*Longitude.Category + Latitude*Trt + Longitude.Category*Trt + I(Latitude^2)*Trt + I(Latitude^2)*Longitude.Category), pred1, fam1, varb, id, root, data = reshape.precip)
I then tried a reduced model, with only those interactions with Trt, and it wouldn't work at all:
clusters.2.aster.2.quad <- aster(resp~ varb + clusters_art:(Col + Edge + Latitude + Longitude.Category + Trt + I(Latitude^2) + Latitude*Trt + Longitude.Category*Trt + I(Latitude^2)*Trt), pred1, fam1, varb, id, root, data = reshape.precip)
I received the following error with this second model:
Error in check.objfun.output(out, minimize, d) :
objfun returned hessian not having all elements finite
Any help would be much obliged!
Thank you!
Amanda