Mining X

1 view
Skip to first unread message

Destiny Olatunji

unread,
Jul 25, 2024, 11:42:55 PM7/25/24
to Aleph

Mining is the extraction of valuable geological materials and minerals from the surface of the Earth. Mining is required to obtain most materials that cannot be grown through agricultural processes, or feasibly created artificially in a laboratory or factory. Ores recovered by mining include metals, coal, oil shale, gemstones, limestone, chalk, dimension stone, rock salt, potash, gravel, and clay. The ore must be a rock or mineral that contains valuable constituent, can be extracted or mined and sold for profit.[1] Mining in a wider sense includes extraction of any non-renewable resource such as petroleum, natural gas, or even water.

Modern mining processes involve prospecting for ore bodies, analysis of the profit potential of a proposed mine, extraction of the desired materials, and final reclamation or restoration of the land after the mine is closed.[2] Mining materials are often obtained from ore bodies, lodes, veins, seams, reefs, or placer deposits. The exploitation of these deposits for raw materials is dependent on investment, labor, energy, refining, and transportation cost.

Mining operations can create a negative environmental impact, both during the mining activity and after the mine has closed. Hence, most of the world's nations have passed regulations to decrease the impact; however, the outsized role of mining in generating business for often rural, remote or economically depressed communities means that governments often fail to fully enforce such regulations. Work safety has long been a concern as well, and where enforced, modern practices have significantly improved safety in mines. Unregulated, poorly regulated or illegal mining, especially in developing economies, frequently contributes to local human rights violations and environmental conflicts. Mining can also perpetuate political instability through resource conflicts.

Ancient Egyptians mined malachite at Maadi.[8] At first, Egyptians used the bright green malachite stones for ornamentations and pottery. Later, between 2613 and 2494 BC, large building projects required expeditions abroad to the area of Wadi Maghareh in order to secure minerals and other resources not available in Egypt itself.[9] Quarries for turquoise and copper were also found at Wadi Hammamat, Tura, Aswan and various other Nubian sites on the Sinai Peninsula and at Timna.[9] Quarries for gypsum were found at the Umm el-Sawwan site; gypsum was used to make funerary items for private tombs. Other minerals mined in Egypt from the Old Kingdom (2649-2134 BC) until the Roman Period (30 BC-AD 395) including granite, sandstone, limestone, basalt, travertine, gneiss, galena, and amethyst.[10]

Mining in Egypt occurred in the earliest dynasties. The gold mines of Nubia were among the largest and most extensive of any in Ancient Egypt. These mines are described by the Greek author Diodorus Siculus, who mentions fire-setting as one method used to break down the hard rock holding the gold. One of the complexes is shown in one of the earliest known mining maps.[11] The miners crushed the ore and ground it to a fine powder before washing the powder for the gold dust known as the dry and wet attachment processes.[12]

Mining in Europe has a very long history. Examples include the silver mines of Laurium, which helped support the Greek city state of Athens. Although they had over 20,000 slaves working them, their technology was essentially identical to their Bronze Age predecessors.[13] At other mines, such as on the island of Thassos, marble was quarried by the Parians after they arrived in the 7th century BC.[14] The marble was shipped away and was later found by archaeologists to have been used in buildings including the tomb of Amphipolis. Philip II of Macedon, the father of Alexander the Great, captured the gold mines of Mount Pangeo in 357 BC to fund his military campaigns.[15] He also captured gold mines in Thrace for minting coinage, eventually producing 26 tons per year.

However, it was the Romans who developed large-scale mining methods, especially the use of large volumes of water brought to the minehead by numerous aqueducts. The water was used for a variety of purposes, including removing overburden and rock debris, called hydraulic mining, as well as washing comminuted, or crushed, ores and driving simple machinery.

The Romans used hydraulic mining methods on a large scale to prospect for the veins of ore, especially using a now-obsolete form of mining known as hushing. They built numerous aqueducts to supply water to the minehead, where the water was stored in large reservoirs and tanks. When a full tank was opened, the flood of water sluiced away the overburden to expose the bedrock underneath and any gold-bearing veins. The rock was then worked by fire-setting to heat the rock, which would be quenched with a stream of water. The resulting thermal shock cracked the rock, enabling it to be removed by further streams of water from the overhead tanks. The Roman miners used similar methods to work cassiterite deposits in Cornwall and lead ore in the Pennines.

Sluicing methods were developed by the Romans in Spain in 25 AD to exploit large alluvial gold deposits, the largest site being at Las Medulas, where seven long aqueducts tapped local rivers and sluiced the deposits. The Romans also exploited the silver present in the argentiferous galena in the mines of Cartagena (Cartago Nova), Linares (Castulo), Plasenzuela and Azuaga, among many others.[16] Spain was one of the most important mining regions, but all regions of the Roman Empire were exploited. In Great Britain the natives had mined minerals for millennia,[17] but after the Roman conquest, the scale of the operations increased dramatically, as the Romans needed Britannia's resources, especially gold, silver, tin, and lead.

Roman techniques were not limited to surface mining. They followed the ore veins underground once opencast mining was no longer feasible. At Dolaucothi they stoped out the veins and drove adits through bare rock to drain the stopes. The same adits were also used to ventilate the workings, especially important when fire-setting was used. At other parts of the site, they penetrated the water table and dewatered the mines using several kinds of machines, especially reverse overshot water-wheels. These were used extensively in the copper mines at Rio Tinto in Spain, where one sequence comprised 16 such wheels arranged in pairs, and lifting water about 24 metres (79 ft). They were worked as treadmills with miners standing on the top slats. Many examples of such devices have been found in old Roman mines and some examples are now preserved in the British Museum and the National Museum of Wales.[18]

Mining as an industry underwent dramatic changes in medieval Europe. The mining industry in the early Middle Ages was mainly focused on the extraction of copper and iron. Other precious metals were also used, mainly for gilding or coinage. Initially, many metals were obtained through open-pit mining, and ore was primarily extracted from shallow depths, rather than through deep mine shafts. Around the 14th century, the growing use of weapons, armour, stirrups, and horseshoes greatly increased the demand for iron. Medieval knights, for example, were often laden with up to 100 pounds (45 kg) of plate or chain link armour in addition to swords, lances and other weapons.[19] The overwhelming dependency on iron for military purposes spurred iron production and extraction processes.

The silver crisis of 1465 occurred when all mines had reached depths at which the shafts could no longer be pumped dry with the available technology.[20] Although an increased use of banknotes, credit and copper coins during this period did decrease the value of, and dependence on, precious metals, gold and silver still remained vital to the story of medieval mining.

Due to differences in the social structure of society, the increasing extraction of mineral deposits spread from central Europe to England in the mid-sixteenth century. On the continent, mineral deposits belonged to the crown, and this regalian right was stoutly maintained. But in England, royal mining rights were restricted to gold and silver (of which England had virtually no deposits) by a judicial decision of 1568 and a law in 1688. England had iron, zinc, copper, lead, and tin ores. Landlords who owned the base metals and coal under their estates then had a strong inducement to extract these metals or to lease the deposits and collect royalties from mine operators. English, German, and Dutch capital combined to finance extraction and refining. Hundreds of German technicians and skilled workers were brought over; in 1642 a colony of 4,000 foreigners was mining and smelting copper at Keswick in the northwestern mountains.[21]

Use of water power in the form of water mills was extensive. The water mills were employed in crushing ore, raising ore from shafts, and ventilating galleries by powering giant bellows. Black powder was first used in mining in Selmecbnya, Kingdom of Hungary (now Bansk Štiavnica, Slovakia) in 1627.[22] Black powder allowed blasting of rock and earth to loosen and reveal ore veins. Blasting was much faster than fire-setting and allowed the mining of previously impenetrable metals and ores.[23] In 1762, one of the world's first mining academies was established in the same town there.

The widespread adoption of agricultural innovations such as the iron plowshare, as well as the growing use of metal as a building material, was also a driving force in the tremendous growth of the iron industry during this period. Inventions like the arrastra were often used by the Spanish to pulverize ore after being mined. This device was powered by animals and used the same principles used for grain threshing.[24]

Much of the knowledge of medieval mining techniques comes from books such as Biringuccio's De la pirotechnia and probably most importantly from Georg Agricola's De re metallica (1556). These books detail many different mining methods used in German and Saxon mines. A prime issue in medieval mines, which Agricola explains in detail, was the removal of water from mining shafts. As miners dug deeper to access new veins, flooding became a very real obstacle. The mining industry became dramatically more efficient and prosperous with the invention of mechanically- and animal-driven pumps.

Reply all
Reply to author
Forward
0 new messages